Skip to main content

Logistic Regression for Campaign Management

Campaign management example (using logistic regression)

Recall the campaign management scenario described in Data Mining Services: Overview. Your company wants to improve the effectiveness of its marketing campaigns, with the goals of reducing costs and increasing the percent of positive responses. The results of a previous campaign will be analyzed to determine what factors, if any, can be used to predict the performance of a similar future campaign. Use logistic regression analysis to generate a predictive model. Logistic regression selects the most likely outcome from a set of distinct possibilities.
A recent back-to-school sale campaign produced hundreds of respondents from a pool of thousands of customers. The campaign was based on the following:
Age
Gender
Household count
Income range
To predict future campaigns based on the back-to-school sale campaign, you want to use all of these attributes as predictors in the predictive model. Therefore, you must create metrics for each attribute form. Some example metrics for this report are as follows:
 Max([Customer Age Range]@ID) {Customer}
 Max([Customer Gender]@DESC) {Customer}
 Max([Customer Household Count]@DESC)
 {Customer}
The example Tutorial project includes reports, metrics, and other objects created for this campaign management example (search the project for “Campaign Management”). You can use the objects in the Tutorial project to step through the example and determine how it can be applied to your reporting environment.
Use the Training Metric Wizard to design a training metric, following the procedure below.

To create a training metric for logistic regression analysis

This procedure assumes you have already created a Back-to-School Sale Responder metric to use as the dependent metric.
1In MicroStrategy Developer, select Training Metric Wizard from the Tools menu. The Training Metric Wizard opens on the Introduction page.
To skip the Introduction page when creating training metrics in the future, select the Don’t show this message next timecheck box.
2Click Next to open the Select Type of Analysis page.
3Select Logistic regression as the type of analysis.
4Click Next to open the Select Metrics page.
5Select Back-to-School Sale Responder as the Dependent Metric.
6Add the Age RangeGender, and Household Count metrics to the list of Independent Metrics.
7Click Next to open the Select Output page.
8Select the Automatically create on report execution check box.
9Select Predicted Value.
10Click Finish to save and create the metric. You can now include the metric in a training metric to create a predictive metric, as described in Creating a predictive model using MicroStrategy.
11Create a new report with the training metric, Back-to-School Sale Responder metric, and the Customer and Order attributes.
12Filter the report to include only orders dated during the back-to-school promotional period. For example, you can create a filter that only includes the months of August and September.
13Execute the report to generate a logistic regression model.
A predictive metric is created in the folder you specified in the Training Metric Wizard. The default location is the My Objects folder.
By adding the predictive metric to a new report along with the Customer attribute and the Back-to-School Sale Responder metric, the accuracy of the prediction is shown to be correct almost 100% of the time; there were only a few incorrect predictions out of thousands of customers.
The predictive metric is ready to be used to target customers who are likely to respond to a future campaign.

Comments

  1. Thanks for sharing this info, I found this very useful for my future career in logistic, I am also doing my PGDM course in logistic and this was very useful info for myself.

    ReplyDelete

Post a Comment

Popular posts from this blog

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

Control the display of null and zero metric values

Show   Control the display of null and zero metric values in a grid report You can determine how to display or hide rows and columns in a grid report that consist only of null or zero metric values. You can have MicroStrategy hide the rows and columns in the following ways: Hide rows and columns that consist only of null metric values Hide rows and columns that consist only of zero metric values Hide rows and columns that consist only of null or zero metric values (default) Once you have defined how MicroStrategy hides null and zero metric values in the grid, you can quickly show or hide the grid using the Hide Nulls/Zeros option in the Data menu, as described below, or by clicking the  Hide Nulls/Zeros  icon  in the Data toolbar. To determine how null and zero metric values are displayed or hidden in a grid report Open the report in Edit mode. From the  Tools  menu, select  Report Options . The Report Options...

Microstrategy Report Pre and Post Statements

Microstrategy Report Pre and Post Statements Report Post Statement The Report Post Statement settings insert custom SQL statements after the final SELECT statement but before the DROP statements. The settings are numbered 1-5. Each text string entered in Report Post Statement 1 through Report Post Statement 4 is executed separately as a single statement. To execute more than five statements, insert multiple statements in Report Post Statement 5, separating each statement with a semicolon (;). The SQL Engine breaks them into individual statements at the semicolons and executes each separately. The custom SQL is applied to every intermediate table or view. Report Pre Statement The Report Pre Statement settings insert custom SQL statements at the beginning of the report SQL. The settings are numbered 1-5. Each text string entered in Report Pre Statement 1 through Report Pre Statement 4 is executed separately as a single statement. To execute more than five statem...

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Disable data blending in MicroStrategy

Disable data blending in MicroStrategy Starting in MicroStrategy 9.4 data blending was made available for documents and dashboards. This permits grid, graph and widget objects to source data from multiple different datasets at the same time.  This is available under the analytical engine VLDB properties inside of project configuration. The property is named "document grids from multiple datasets" and defaults to enabled but can be set to disabled.  Below are the steps to enable/disable the settings of data blending: 1. Go to project configuration by right clicking on specific project(You need admin rights to do this). 2. In the Project configuration windows as shown below select Configure under Project level VLDB settings section. 3. Now it will open the VLDB settings window, select + on " Analytical Engine Settings " and then click on " Document Grids from multiple datasets " option. You will be presented with two...

Multi-Table Data Import(MTDI) from one or more supported data sources

Multi-Table Data Import(MTDI) from one or more supported data sources In MicroStrategy Analytics Enterprise Web 10 onewards, users can now simultaneously import two or more tables from one or more supported data sources, this feature is called Multi-Table Data Import (MTDI) which has been renamed as Super Cubes in MSTR 2019 (Does it sound like multisourcing for all the users without admin help?) Currently, all connectors in MicroStrategy Web 10 except " OLAP " and " Search Engine Indices " support Multi-Table Data Import. Users are able to add multiple tables/files when doing data import from single connector, as shown below: Users are also able to combine multiple tables/files from different sources and store them into one single Intelligent Cube, as shown below:

The logical table size calculation in Microstrategy

The logical table size calculation in Microstrategy The logical table size is an integer number that represents the granularity or level of aggregation of a particular table. It is called 'logical' because it is not related to the physical size of the tables (number of rows). It is calculated according to the attribute IDs that are present in the table and their level in the system hierarchy.   Even though, the number does not reveal the actual number of rows in the table, it is an accurate way of measuring a table size without having to access its contents.   MicroStrategy Engine utilizes an algorithm based on attribute keys to calculate the Logical Table Size (LTS):   Given the following tables:     The algorithm that calculates the table sizes performs the following steps: Calculate the number of levels per hierarchy: Hierarchy 1: 3 Hierarchy 2: 4 Calculate each attribute individual weight according to the level in the hierarchy (level in hierarchy/number of ...

Update the data on an Intelligent Cube without having to republish the entire cube in MicroStrategy

Update the data on an Intelligent Cube without having to republish the entire cube in MicroStrategy MicroStrategy has introduced a feature known as, Incremental Refresh Options, which allow Intelligent Cubes to be updated based on one or more attributes, by setting up incremental refresh settings to update the Intelligent Cube with only new data. This can reduce the time and system resources necessary to update the Intelligent Cube periodically versus a full republish. For example, if a user has an Intelligent Cube that contains weekly sales data, the user may want this Intelligent Cube to be updated at the end of every week with the sales data for that week. By setting up incremental refresh settings, he can make it so that only data for one week is added to the Intelligent Cube, without affecting the existing data and without having to reload all existing data. Users can select t...

Apply or Pass-through functions in Microstrategy

Ap ply (Pass-Through) functions MSTR Apply functions provide access to functions or syntactic constructs that are not standard in MicroStrategy but are provided by various RDBMS systems.. Syntax common to Apply functions Apply Function Name   ("expression with placeholders", Arg1, Arg2, Arg3, …ArgN) where: Apply Function Name  – is a generic name used for the predefined pass-through functions described above expression with placeholders  – is the string describing the actual expression or syntax that the engine uses while generating the SQL and which is sent to the RDBMS. The placeholders are represented by #0, #1, and so on. "#" is a reserved character for MicroStrategy. Arg  – is an argument that replaces the parameter markers in the pattern. Arg1 replaces #0, Arg2 replaces #1, and so on. There are   five  pre-defined Apply functions to replace regular, predefined functions of the same type. For more details, cli...

Components of the MicroStrategy Engine

Components of the MicroStrategy Engine The MicroStrategy Engine consists of three engines:  • SQL Engine  • Query Engine  • Analytical Engine  These individual engines work together to fulfill report requests submitted by MicroStrategy that can be resolved by pure SQL alone.  The SQL Engine is responsible for generating optimized SQL and producing result sets that can be resolved by pure SQL alone. The Query Engine is responsible for executing the SQL generated by the SQL Engine.  The Analytical Engine is responsible for performing any calculation that cannot be resolved with SQL alone.