Skip to main content

Joint Child Relationships in MSTR

Some attributes exist at the intersection of other indirectly related attributes. Such attributes are called joint children.

Joint child relationships connect special attributes that are sometimes called cross-dimensional attributes, text facts, or qualities. They do not fit neatly into the modeling schemes you have learned about thus far. These relationships can be modeled and conceptualized like traditional attributes but, like facts, they exist at the intersection of multiple attribute levels.
Many source systems refer to these special attributes as flags. Therefore, if flags are referenced in your source system documentation, these are likely candidates for joint child relationships.
Joint child relationships are really another type of many-to-many relationship where one attribute has a many-to-many relationship to two otherwise unrelated attributes. For example, consider the relationship between three attributes: Promotion, Item, and Quarter. In this case, Promotion has a many-to-many relationship to both Item and Quarter, as shown in the following diagram.
external image AdvDataModel_PIQ.gif
An example of a promotion might be a “Red Sale” where all red items are on sale. A business might run this promotion around Valentine's Day and again at Christmas time.

Supporting joint child relationships

One way to resolve a many-to-many relationship is to have a relationship table for the attributes involved in the many-to-many relationships. In this case, you might create two relationship tables, one to relate Promotion and Item. The second relates Promotion and Quarter as shown in the following diagram.
external image AdvDataModel_PIQ2.gif
These two tables are sufficient to answer questions such as:

What items have been in what promotions?


What quarters have had what promotions?
However, these tables are not sufficient to answer the following more detailed and insightful questions:

What items were in what promotions in a given quarter?


In what quarters was a certain item involved in a certain type of promotion?
To answer these questions, you must combine the two relationship tables, creating one table to relate all three attributes.
The relationship in the distinct relationship table must exist for a joint child relationship to be properly defined. However, it does not necessarily have to be in its own, distinct relationship table. Defining the relationship directly in the lookup table for the parent of the joint child—in this case, Promotion—would be fine. Alternatively, you can build the relationship directly into the fact table.
In these examples, it is important to notice the relationship between the three attributes. The Promotion attribute is related to a particular Item-Quarter pair, as opposed to it being related to Item and Quarter separately. This is the essence of a joint child relationship and is shown in the following diagram.
external image joint_child_relationships.gif
Notice that a joint child relationship can be one-to-many or many-to-many. The issues with many-to-many relationships, including loss of analytical capability and multiple counting, also apply to many-to-many joint child relationships.
If you have a joint child relationship in your data, it is important for you to define it in MicroStrategy so that you get the correct data for reports that use the parent attribute in a joint child attribute. This ensures that when you need to join the fact table to the parent attribute of a joint child relationship (for example, to see sales by promotion) the join will always use both joint children rather than just one or the other.

Supporting many-to-many and joint child relationships

Two forms of attribute relationships, many-to-many relationships and joint child relationships, can introduce additional complexity to the schema and warehouse design process. The following sections discuss the considerations you must make to ensure an effective warehouse design in light of the unique nature of these relationships.
While the topics are largely related to logical model design, a working knowledge of physical schemas is helpful when dealing with the challenges involved with these topics.
Before reading this section, you should know what logical data models and physical warehouse schemas are, and how to read and interpret them. Logical data models and physical warehouse schemas are discussed in The Logical Data Model and Warehouse Structure for Your Logical Data Model respectively. These chapters discuss how to plan and create a conceptual framework for your business intelligence data.

Many-to-many relationships

The presence of many-to-many relationships introduces complexity during the warehouse design process. With the presence of many-to-many relationships, you must make additional considerations to effectively plan your design.
Below are some real-life examples of many-to-many relationships which must be carefully handled in the data model and schema:

In a certain organization, each salesperson can work in more than one calling center. Likewise, each calling center has many salespeople.


In a car manufacturing plant, many models of cars are produced, and each comes in several colors. That is, there are many colors for a single type of car, and many types of cars can be associated with the same color.
The following sections use the example of items and colors to demonstrate a many-to-many relationship and the options you have for dealing with them. One item can come in many colors, such as red hats, blue hats, and green hats, and one color can be associated with many items, such as red dress, red hat, red shoes, and red socks.
Potential problems with many-to-many relationships usually come in the following forms, both of which can be avoided by correctly modeling the relationship:

Loss of analytical capability


Multiple counting

Loss of analytical capability

With the color and item many-to-many relationship, there are usually two business questions for which users want answers:

In what colors are certain items available?


How much of a particular item/color combination was sold?
Answering the first question requires a table that contains a list of all possible item/color combinations. Recall that one-to-many relationships are usually in the child’s lookup table.
In many-to-many relationships this is not feasible. Rather, a distinct relationship table needs to be present in your warehouse. The following diagram shows the lookup and relationship tables for item and color:
external image color_item_relate_table.gif
The Rel_Color_Item table provides a row for every possible item/color combination.
Answering the second question requires a fact table that has sales information as well as color and item information. The following diagram shows the same scenario as before, but in addition it shows a simple fact table containing sales data keyed by item, color, and date.
external image color_item_relate_fact.gif
The fact table in the above diagram alone is not sufficient to answer the first question. Only item and color combinations that were actually sold, and therefore have sales recorded, can be retrieved from this table. If you have item and color combinations that are available but that have never been sold, this fact table cannot provide a complete list of item and color combinations to answer question one.
In summary, to prevent any loss of analytical flexibility when dealing with a many-to-many attribute relationship, the following requirements must be met:

A distinct relationship table to identify all the possible combinations of attribute elements between attributes


Both the attribute ID columns in the fact table
You can implement the above points in several different ways, which are discussed in Working with many-to-many relationships.

Multiple counting

When dealing with many-to-many relationships, loss of analytical capability is only one challenge. Another equally significant issue is multiple counting. Multiple counting occurs when all of the following takes place:

You attempt to aggregate data to the level of one of the attributes in the many-to-many relationship, or a higher level than one of the attributes in the many-to-many relationship.


The relationship exists in a distinct relationship table.


All of the attributes in the many-to-many relationship are not in the fact table.
Recall the example from above, but make the following change: remove color from the fact table.
external image multiple_counting.gif
Assume that there are three items, including hats, dresses, and socks. These items come in three colors, including red, blue, and green, with the exception of socks, which come in only green and blue. The following diagram shows this data in the lookup tables as well as some simple sales data:
external image multiple_counting2.gif
The risk of multiple counting occurs when you run a query requesting the sales by color, effectively aggregating to the item attribute level in the many-to-many relationship. This query would require both the fact table, which has the sales information by item, and the relationship table, since color is not recorded in the fact table.
The difficulty lies in the fact that color is not in the fact table. There is no way to directly relate the sales of an item in the fact table to the color of that particular item. For example, instead of calculating the sales of red items, the query aggregates sales for all items that come in red according to the relationship table. The sum includes all hats and all dresses, including blue ones and green ones. This obviously leads to numbers that are higher than the true sales for red items.
For example, using the given data, the following questions cannot all be answered accurately:

What are the total sales for hats?
The answer is $35, which can be calculated directly from the fact table.

What are the total sales for red items?
You cannot determine an accurate answer. The answer you get is $85, which is the total for all hats and dresses, since socks do not come in red. It is entirely possible that all the dresses sold are green; however, you cannot confirm this since color is not recorded in the fact table.

What are the total sales for red dresses?
Again, you cannot determine an accurate answer. If all the dresses sold are indeed green, the correct answer is $0, but the answer you will get based on the data in the fact table is $50.
The following section describes several ways to prevent multiple counting when dealing with many-to-many relationships.

Working with many-to-many relationships

As you can see, seemingly simple questions can require you to take a number of steps to answer them when many-to-many relationships are involved.
You can use one of three techniques to provide physical support to answer the types of questions that cannot be answered accurately when using many-to-many relationships. The three techniques all have differing levels of flexibility, and flexibility is always a trade-off with complexity. In all cases, the two fundamental components remain in place in one form or another:

A relationship table to define the attribute relationship


Both the attribute’s ID columns in the fact table
MicroStrategy builds the rules that MicroStrategy SQL Engine uses to generate SQL when a report request is made. If you make both of the above physical implementations, the SQL Engine uses the related table when no metric is included on the report. When a metric is included, the fact table is used to answer the query.
All of the following methods require additional data in the fact table. This means that you must capture the additional data in the source system. For example, you need to have data in the source system as to what the color is of each item sold. If this additional data was never captured in the source system, you cannot fully resolve the many-to-many relationship to calculate the amount of sales for items of a certain color.
Method 1
This method is the most straightforward way to effectively manage many-to-many relationships.
Method 1 requires you to create a separate relationship table (in this case, Rel_Color_Item) and add both attribute IDs to the fact table as shown in the following diagram.
external image MM_Method1.gif
Method 2
Method 2 eliminates the many-to-many relationship and the need for a distinct relationship table.
Here the many-to-many relationship is converted into a compound attribute relationship. You treat one attribute as a child of the other and have a compound key for the lower level attribute. Also, you add both attribute IDs, in this case Item_ID and Color_ID, to the fact table as shown in the following diagram.
external image MM_Method2.gif
While this method eliminates the need for a separate relationship table, you lose the ability to view items independent of color, or vice versa.
Method 3
Method 3 is the most versatile solution and has the following characteristics:

Further simplifies the compound attribute relationship from Method 2 into a simple attribute relationship


Provides the ability to view item and color together or independently


Requires only one attribute column in the fact table for complete flexibility, rather than two
Here you must create a new attribute, lower in level than either Color or Item. This attribute is essentially a concatenation of Color and Item, which gives it a one-to-many relationship between itself and each of its parent attributes. This is the SKU attribute, particularly common in retail data models or situations.
Finally, rather than including Color and Item in the fact table, you only need to include this new child attribute SKU, as shown in the following diagram.
external image MM_Method3.gif
This method is actually quite similar to Method 1. The major difference is that the distinct relationship table from Method 1 has an additional column, SKU, which extends the relationship of each item and color combination into a single value. Consequently, you can use this single value in the fact table.
The major disadvantage of Method 3 lies in creating the new attribute if your business model does not already use a similar structure, as well as possibly adding complexity to the ETL process.

Comments

Popular posts from this blog

Microstrategy Report Services documents and dashboards

Microstrategy Report Services documents vs Dashboards A MicroStrategy Report Services document displays data coming from multiple reports, with the data laid out and designed in presentation-quality format. Most data on a document is from one or more underlying datasets. A dataset is a standard MicroStrategy report. Other document components that do not originate from the dataset, such as static text used for a title or heading, page numbers, and images, are added by the document's designer and are stored in the document's definition. A Report Services (RS) dashboard is a special type of document. An RS dashboard is commonly only one page long, is intended to be viewed online, and usually provides interactive features that let analysts change how they view the dashboard’s data, as well as what data they are viewing. A broad selection of widgets and a wide variety of formatting options allow you to design a customized, interactive dashboard. Both documents and RS dashb...

Metric values are repeated across rows when a report is executed in MicroStrategy

Metric values are repeated across rows when a report is executed in MicroStrategy When comparing report results between DB Query Tool and MicroStrategy, some reports show repeated metric values in MicroStrategy where there were none in DB Query Tool. To illustrate the issue, a fact table CAT_ITEM_SLS has been added into the MicroStrategy Tutorial project and populated with a small set of three rows. CAT_ID ITEM_ID REVENUE  1 1  10   1 2  20  2  2  30  Report results in DB Query Tool: Report results in MicroStrategy: In MicroStrategy, the row for "Art As Experience" in the Spring 2007 catalog repeats the $20 value from the Winter 2007 catalog, where DB Query Tool shows the $30 value from the fact table. CAUSE The discrepancy occurs because the attribute elements for Catalog and Item are in a many-to-many relationship, but the attribute relationship in the MicroStrategy schema is defined incorrectly w...

Microstrategy Dossiers explained

Microstrategy  Dossiers With the release of MicroStrategy 10.9, we’ve taken a leap forward in our dashboarding capabilities by simplifying the user experience, adding storytelling, and collaboration.MSTR has  evolved dashboards to the point that they are more than dashboards - they are  interactive, collaborative analytic stories . Ultimately, it was time to go beyond dashboards, both in concept and in name, and so  the've  renamed VI dashboards to  ‘ dossiers ’.  Dossiers can be created by using the new Desktop product or Workstation or simply from the Web interface which replaces Visual Insights. All the existing visual Insights dashboards will be converted to Dossiers   With MicroStrategy 10.9, there was an active focus on making it easier to build dashboards for the widest audience of end users. To achieve this, some key new capabilities were added that make it easier to author, read, interact and collaborate on dashboards ...

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Prompt-in-prompt (nested prompt) in a FreeForm SQL Report in MicroStrategy

Prompt-in-prompt (nested prompt) feature in a FreeForm SQL Report in MicroStrategy  The following procedure describes how to achieve prompt-in-prompt in a Freeform SQL report in MicroStrategy Tutorial project: Create a new filter, select Add an Attribute qualification and choose the highest level attribute Country. Make sure to Qualify On: Elements. Click Prompt as the image shown below. Accept all the default values without any changes in the popped up window after clicking on "Prompt" as shown below. Save the filter as "Country Filter". Click "Prompt", choose "Use a filter to reduce the number of elements" option and select Country Filter created in last step, as shown below. Save the filter as "Region Filter". Select Filter definition prompt -> Choose from an attribute element list as shown below. Choose attribute Call Center and use the Region Filter created in the previous st...

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

Configure a report for use with Bulk Export in MicroStrategy

Configure a report for use with Bulk Export in MicroStrategy The Bulk Export feature enables a large report to be saved as a delimited text file. Using this feature, it is possible to retrieve result sets from a large dataset without having to load the entire dataset into memory. PS:  Once a report is setup for bulk export it cannot be used as a regular report. So if the report needs to be run as a normal report and as a bulk export report, the first step is to make a copy of the report for use with bulk export. Configure Bulk Export Bulk Export options are only available in MicroStrategy Developer. Open a 3-tier connection using MicroStrategy Developer and edit the desired report. Go to 'Data' on the top menu bar. Select 'Configure Bulk Export': Specify any additional desired configuration options. General Settings Bulk export database instance : This is the database instance to use to store the bulk export results. Temporary tables w...

Activate MicroStrategy Geospatial Services

Activate MicroStrategy Geospatial Services MicroStrategy 10.11 introduces our new mapping capability: MicroStrategy Geospatial Services, powered by Mapbox. This enhanced map visualization is available for dossiers on all interfaces including MicroStrategy Desktop, Workstation, Web and Library (Mobile included). With MicroStrategy Geospatial Services, MicroStrategy now offers advanced geospatial analytics features that allow users to get more out of their location data. This new feature is available in addition to the out-of-the-box ESRI maps. MicroStrategy Geospatial Services allows users to: Plot polygon shapes for most countries, down to the zip code level Perform powerful interaction between layers (progressively hide or show data layers as zoom levels change) Identify and resolve location name conflicts Add thresholds to data points, size markers for metrics, and color by for both attributes and metrics Fine tune clustering behavior when aggregating data on a ma...

Prompt-in-prompt(Nested Prompts) in Microstrategy

Prompt-in-prompt(Nested Prompts) in  Microstrategy Nested prompts allows you to create one prompt based on the other and other bases on another, nested prompts allows us to prompt the highest level(Like year) to middle level(like Quarter, then to the low level(like Month). Here you can see how to  create a 3-level deep nested prompt that will prompt the user to select a year, then a quarter within that year, then a month within that quarter. Prompt-in-prompt is a feature in which the answer to one prompt is used to define another prompt. This feature is only implemented for element list prompts . The following procedure describes how to achieve this: Create the highest level filter. This is a filter which contains a prompt on an attribute element list. Create a filter on the attribute "Year." Click "prompt on attribute element list" and click "Next" through the rest of the screens to accept the default values. Do not set any additio...

Custom formatting Microstrategy metric format into 1M 2M etc

Custom formatting metric values of 1,100,000 into a 1.1 million 1.1M type format  In addition to the the pre-defined options for metric formatting, MicroStrategy supports custom formatting. The MicroStrategy Tutorial project is used to explain how users can customize numbers from "1,000,000" to a "1.00" format. Consider a report containing row data values greater than a million, as illustrated below: To format these metric values to use a decimal (i.e., 1.1) instead of showing all the numerals, right-click on the metric (' Revenue ' , for this example) and select  Formatting > Revenue Values , as shown below: Select " Custom " as a category in the Number tab and enter ' 0,,.## ' (without quotation marks), as shown below: Confirm that the format applied properly: