Skip to main content

many-to-many and joint child relationships

Supporting many-to-many and joint child relationships in MSTR


Two forms of attribute relationships, many-to-many relationships and joint child relationships, can introduce additional complexity to the schema and warehouse design process. The following sections discuss the considerations you must make to ensure an effective warehouse design in light of the unique nature of these relationships.
While the topics are largely related to logical model design, a working knowledge of physical schemas is helpful when dealing with the challenges involved with these topics.
Before reading this section, you should know what logical data models and physical warehouse schemas are, and how to read and interpret them. Logical data models and physical warehouse schemas are discussed in The Logical Data Modeland Warehouse Structure for Your Logical Data Model respectively. These chapters discuss how to plan and create a conceptual framework for your business intelligence data.

Many-to-many relationships

The presence of many-to-many relationships introduces complexity during the warehouse design process. With the presence of many-to-many relationships, you must make additional considerations to effectively plan your design.
Below are some real-life examples of many-to-many relationships which must be carefully handled in the data model and schema:

In a certain organization, each salesperson can work in more than one calling center. Likewise, each calling center has many salespeople.


In a car manufacturing plant, many models of cars are produced, and each comes in several colors. That is, there are many colors for a single type of car, and many types of cars can be associated with the same color.
The following sections use the example of items and colors to demonstrate a many-to-many relationship and the options you have for dealing with them. One item can come in many colors, such as red hats, blue hats, and green hats, and one color can be associated with many items, such as red dress, red hat, red shoes, and red socks.
Potential problems with many-to-many relationships usually come in the following forms, both of which can be avoided by correctly modeling the relationship:

Loss of analytical capability


Multiple counting

Loss of analytical capability

With the color and item many-to-many relationship, there are usually two business questions for which users want answers:

1In what colors are certain items available?


2How much of a particular item/color combination was sold?
Answering the first question requires a table that contains a list of all possible item/color combinations. Recall that one-to-many relationships are usually in the child’s lookup table.
In many-to-many relationships this is not feasible. Rather, a distinct relationship table needs to be present in your warehouse. The following diagram shows the lookup and relationship tables for item and color:
external image color_item_relate_table.gif
The Rel_Color_Item table provides a row for every possible item/color combination.
Answering the second question requires a fact table that has sales information as well as color and item information. The following diagram shows the same scenario as before, but in addition it shows a simple fact table containing sales data keyed by item, color, and date.
external image color_item_relate_fact.gif
The fact table in the above diagram alone is not sufficient to answer the first question. Only item and color combinations that were actually sold, and therefore have sales recorded, can be retrieved from this table. If you have item and color combinations that are available but that have never been sold, this fact table cannot provide a complete list of item and color combinations to answer question one.
In summary, to prevent any loss of analytical flexibility when dealing with a many-to-many attribute relationship, the following requirements must be met:

A distinct relationship table to identify all the possible combinations of attribute elements between attributes


Both the attribute ID columns in the fact table
You can implement the above points in several different ways, which are discussed in Working with many-to-many relationships.

Multiple counting

When dealing with many-to-many relationships, loss of analytical capability is only one challenge. Another equally significant issue is multiple counting. Multiple counting occurs when all of the following takes place:

You attempt to aggregate data to the level of one of the attributes in the many-to-many relationship, or a higher level than one of the attributes in the many-to-many relationship.


The relationship exists in a distinct relationship table.


All of the attributes in the many-to-many relationship are not in the fact table.
Recall the example from above, but make the following change: remove color from the fact table.
external image multiple_counting.gif
Assume that there are three items, including hats, dresses, and socks. These items come in three colors, including red, blue, and green, with the exception of socks, which come in only green and blue. The following diagram shows this data in the lookup tables as well as some simple sales data:
external image multiple_counting2.gif
The risk of multiple counting occurs when you run a query requesting the sales by color, effectively aggregating to the item attribute level in the many-to-many relationship. This query would require both the fact table, which has the sales information by item, and the relationship table, since color is not recorded in the fact table.
The difficulty lies in the fact that color is not in the fact table. There is no way to directly relate the sales of an item in the fact table to the color of that particular item. For example, instead of calculating the sales of red items, the query aggregates sales for all items that come in red according to the relationship table. The sum includes all hats and all dresses, including blue ones and green ones. This obviously leads to numbers that are higher than the true sales for red items.
For example, using the given data, the following questions cannot all be answered accurately:

What are the total sales for hats?
The answer is $35, which can be calculated directly from the fact table.

What are the total sales for red items?
You cannot determine an accurate answer. The answer you get is $85, which is the total for all hats and dresses, since socks do not come in red. It is entirely possible that all the dresses sold are green; however, you cannot confirm this since color is not recorded in the fact table.

What are the total sales for red dresses?
Again, you cannot determine an accurate answer. If all the dresses sold are indeed green, the correct answer is $0, but the answer you will get based on the data in the fact table is $50.
The following section describes several ways to prevent multiple counting when dealing with many-to-many relationships.

Working with many-to-many relationships

As you can see, seemingly simple questions can require you to take a number of steps to answer them when many-to-many relationships are involved.
You can use one of three techniques to provide physical support to answer the types of questions that cannot be answered accurately when using many-to-many relationships. The three techniques all have differing levels of flexibility, and flexibility is always a trade-off with complexity. In all cases, the two fundamental components remain in place in one form or another:

A relationship table to define the attribute relationship


Both the attribute’s ID columns in the fact table
MicroStrategy builds the rules that MicroStrategy SQL Engine uses to generate SQL when a report request is made. If you make both of the above physical implementations, the SQL Engine uses the related table when no metric is included on the report. When a metric is included, the fact table is used to answer the query.
All of the following methods require additional data in the fact table. This means that you must capture the additional data in the source system. For example, you need to have data in the source system as to what the color is of each item sold. If this additional data was never captured in the source system, you cannot fully resolve the many-to-many relationship to calculate the amount of sales for items of a certain color.
Method 1
This method is the most straightforward way to effectively manage many-to-many relationships.
Method 1 requires you to create a separate relationship table (in this case, Rel_Color_Item) and add both attribute IDs to the fact table as shown in the following diagram.
external image MM_Method1.gif
Method 2
Method 2 eliminates the many-to-many relationship and the need for a distinct relationship table.
Here the many-to-many relationship is converted into a compound attribute relationship. You treat one attribute as a child of the other and have a compound key for the lower level attribute. Also, you add both attribute IDs, in this case Item_ID and Color_ID, to the fact table as shown in the following diagram.
external image MM_Method2.gif
While this method eliminates the need for a separate relationship table, you lose the ability to view items independent of color, or vice versa.
Method 3
Method 3 is the most versatile solution and has the following characteristics:

Further simplifies the compound attribute relationship from Method 2 into a simple attribute relationship


Provides the ability to view item and color together or independently


Requires only one attribute column in the fact table for complete flexibility, rather than two
Here you must create a new attribute, lower in level than either Color or Item. This attribute is essentially a concatenation of Color and Item, which gives it a one-to-many relationship between itself and each of its parent attributes. This is the SKU attribute, particularly common in retail data models or situations.
Finally, rather than including Color and Item in the fact table, you only need to include this new child attribute SKU, as shown in the following diagram.
external image MM_Method3.gif
This method is actually quite similar to Method 1. The major difference is that the distinct relationship table from Method 1 has an additional column, SKU, which extends the relationship of each item and color combination into a single value. Consequently, you can use this single value in the fact table.
The major disadvantage of Method 3 lies in creating the new attribute if your business model does not already use a similar structure, as well as possibly adding complexity to the ETL process.

Excerpt from https://www2.microstrategy.com/producthelp/10.7/ProjectDesignGuide/WebHelp/Lang_1033/Content/ProjectDesign/Supporting_many_to_many_and_joint_child_relationsh.htm#pd-attributes_overview_3631995489_1086149

Comments

Post a Comment

Popular posts from this blog

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

Microstrategy Dossiers explained

Microstrategy  Dossiers With the release of MicroStrategy 10.9, we’ve taken a leap forward in our dashboarding capabilities by simplifying the user experience, adding storytelling, and collaboration.MSTR has  evolved dashboards to the point that they are more than dashboards - they are  interactive, collaborative analytic stories . Ultimately, it was time to go beyond dashboards, both in concept and in name, and so  the've  renamed VI dashboards to  ‘ dossiers ’.  Dossiers can be created by using the new Desktop product or Workstation or simply from the Web interface which replaces Visual Insights. All the existing visual Insights dashboards will be converted to Dossiers   With MicroStrategy 10.9, there was an active focus on making it easier to build dashboards for the widest audience of end users. To achieve this, some key new capabilities were added that make it easier to author, read, interact and collaborate on dashboards ...

The logical table size calculation in Microstrategy

The logical table size calculation in Microstrategy The logical table size is an integer number that represents the granularity or level of aggregation of a particular table. It is called 'logical' because it is not related to the physical size of the tables (number of rows). It is calculated according to the attribute IDs that are present in the table and their level in the system hierarchy.   Even though, the number does not reveal the actual number of rows in the table, it is an accurate way of measuring a table size without having to access its contents.   MicroStrategy Engine utilizes an algorithm based on attribute keys to calculate the Logical Table Size (LTS):   Given the following tables:     The algorithm that calculates the table sizes performs the following steps: Calculate the number of levels per hierarchy: Hierarchy 1: 3 Hierarchy 2: 4 Calculate each attribute individual weight according to the level in the hierarchy (level in hierarchy/number of ...

Types of prompts in Microstrategy

Types of prompts in Microstrategy The different types of prompts allow you to create a  prompt  for nearly every part of a report. Prompts can be used in many objects including reports, filters, metrics, and custom groups, but all prompts require user interaction when the report is executed. The correct prompt type to create depends on what report objects you want users to be able to base a filter on to filter data, as described in the list below. Filter definition prompts   allow users to determine how the report's data is filtered, based on one of the following objects: Attributes in a hierarchy : Users can select prompt answers from one or more attribute elements from one or more attributes. The attribute elements that they select are used to filter data displayed on the report. This prompt lets you give users the largest number of attribute elements to choose from when they answer the prompt to define their filtering criteria. For example, on a repor...

RunningSum calculation only on the metric subtotal in MicroStrategy

RunningSum calculation only on the metric subtotal in MicroStrategy Here are the series of steps to setup report objects in which metrics and subtotals so only the  subtotal field  will contain the  RunningSum  and the  regular metric values  will be  standard sum values . 1) Create Metric 1 which is the sum of the fact that is to be in the columns. 2) Create Metric2 as the RunningSum of Metric1.  NOTE:  The  sortby  parameter for the RunningSum should be set to whichever attribute you want the report sorted by. 3) Create Metric3 as Metric1 + (Metric2 x 0) 4) Create a new subtotal called "Max" which is defined as Max() 5) On the Subtotals/Aggregation tab for Metric 3, set the Total subtotal function to be "Max" and select the check box for "Allow Smart Metric" 6) Create the desired report and place the 3 metrics on the report.  NOTE:  Only Metric3 is required on the gri...

Apply or Pass-through functions in Microstrategy

Ap ply (Pass-Through) functions MSTR Apply functions provide access to functions or syntactic constructs that are not standard in MicroStrategy but are provided by various RDBMS systems.. Syntax common to Apply functions Apply Function Name   ("expression with placeholders", Arg1, Arg2, Arg3, …ArgN) where: Apply Function Name  – is a generic name used for the predefined pass-through functions described above expression with placeholders  – is the string describing the actual expression or syntax that the engine uses while generating the SQL and which is sent to the RDBMS. The placeholders are represented by #0, #1, and so on. "#" is a reserved character for MicroStrategy. Arg  – is an argument that replaces the parameter markers in the pattern. Arg1 replaces #0, Arg2 replaces #1, and so on. There are   five  pre-defined Apply functions to replace regular, predefined functions of the same type. For more details, cli...

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Email Subscription in Microstrategy

Create Email Subscription in Microstrategy Creates an email subscription. Do not include any leading or trailing spaces in the ANSWER parameters. This causes a SQL error and prevents the command from executing. Ex: CREATE EMAILSUBSCRIPTION "New Multi Users" FOR OWNER "administrator" SCHEDULE "Books Closed" CONTACTGROUP "TEST"  CONTENT "Electronics Revenue by Region" IN FOLDER "\Public Objects\REPORTS\SUBJECT Areas\Sales and Profitability Analysis" IN PROJECT "MicroStrategy Tutorial" DELIVERYFORMAT HTML  EXPIRATIONDATE NEVER EXPRIED FILENAME "file_name"   SUBJECT  "Test REPORT" MESSAGE "Please Test"; CREATE EMAILSUBSCRIPTION [ subscription_name ] [FOR OWNER login_name ] SCHEDULE schedule_name  (ADDRESS address_name | USER user_name  | CONTACT contact_name [ADDRESS contact_ address_name ] | CONTACTGROUP contact_group_name ) CONTENT ( report_or_document_name IN FOLDER   loc...

Optimizing queries in Microstrategy using VLDB properties

Optimizing queries in  Microstrategy using VLDB properties #vldb #vldbproperties The table b elow summarizes the Query Optimizations VLDB properties. Additional details about each property, including examples where necessary, are provided in the sections following the table. Property Description Possible Values Default Value Additional Final Pass Option Determines whether the Engine calculates...

Components of the MicroStrategy Engine

Components of the MicroStrategy Engine The MicroStrategy Engine consists of three engines:  • SQL Engine  • Query Engine  • Analytical Engine  These individual engines work together to fulfill report requests submitted by MicroStrategy that can be resolved by pure SQL alone.  The SQL Engine is responsible for generating optimized SQL and producing result sets that can be resolved by pure SQL alone. The Query Engine is responsible for executing the SQL generated by the SQL Engine.  The Analytical Engine is responsible for performing any calculation that cannot be resolved with SQL alone.