Skip to main content

Slowly changing dimensions

Slowly changing dimensions in MSTR

Slowly changing dimensions (SCDs) are a common characteristic in many business intelligence environments. Usually, dimensional hierarchies are presented as independent of time. For example, a company may annually reorganize their sales organization or recast their product hierarchy for each retail season. “Slowly” typically means after several months or even years. Indeed, if dimensional relationships change more frequently, it may be better to model separate dimensions.
SCDs are well documented in the data warehousing literature. Ralph Kimball has been particularly influential in describing dimensional modeling techniques for SCDs (see The Data Warehouse Toolkit, for instance). Kimball has further coined different distinctions among ways to handle SCDs in a dimensional model. For example, a Type I SCD presents only the current view of a dimensional relationship, a Type II SCD preserves the history of a dimensional relationship, and so forth.
The discussion below is based on an example sales organization that changes slowly in time as the territories are reorganized; for example, sales representatives switch districts in time.

As-is vs. as-was analysis

One of the capabilities available with slowly changing dimensions is the ability to perform either “as-is” analysis or “as-was” analysis:
“As-is” analysis presents a current view of the slowly changing relationships. For example, you can display sales by District according to the way Districts are organized today.
“As-was” analysis presents a historical view of the slowly changing relationships. For example, you can display sales by District according to the way Districts were organized at the time the sales transactions occurred.
The techniques described here provide the flexibility to perform either type of analysis. They also provide you an easy way to specify which type of analysis you would like to perform.

Example 1: Compound key with Effective Date and End Date

One way to physically store an SCD is to employ Effective Date and End Date columns that capture the period of time during which each element relationship existed. In the example below, Sales Rep Jones moved from District 37 to District 39 on 1/1/2004, and Kelly moved from District 38 to 39 on 7/1/2004.
For information on compound keys, please refer to Lookup tables: Attribute storage.
LU_SALES_REP
Sales_Rep_ID
Sales_Rep_Name
District_ID
Eff_Dt
End_Dt
1
Jones
37
1/1/1900
12/31/2003
2
Smith
37
1/1/1900
12/31/2099
3
Kelly
38
1/1/1900
6/30/2004
4
Madison
38
1/1/1900
12/31/2099
1
Jones
39
1/1/2004
12/31/2099
3
Kelly
39
7/1/2004
12/31/2099
When using this type of dimensional lookup table, the fact table must include a date field, such as a transaction date.
FACT_TABLE
Sales_Rep_ID
Trans_Dt
Sales
1
9/1/2003
100
2
9/10/2003
200
3
9/15/2003
150
1
3/1/2004
200
2
3/10/2004
250
3
3/15/2004
300
2
9/5/2004
125
3
9/15/2004
275
4
9/20/2004
150

To specify the MicroStrategy schema

1Create a logical view to represent just the current District-Sales Rep relationships.
LVW_CURRENT_ORG
select Sales_Rep_ID, District_ID
from LU_SALES_REP
where End_Dt = '12/31/2099'
2Create another logical view that performs the “as-was” join between the lookup table and fact table, resulting in a fact view at the District level.
The resulting view is an “as-was” or historical view, which captures the Sales Rep-District relationships that existed at the time the transactions occurred.
LVW_HIST_DISTRICT_SALES
select District_ID, Trans_Dt, sum(sales)
sales 
from LU_SALES_REP L
join FACT_TABLE F
on(L.Sales_Rep_ID = F.Sales_Rep_ID)
where F.Trans_Dt between L.Eff_Dt and
L.End_Dt
group by District_ID, Trans_Dt
3Create a table alias LU_CURRENT_DISTRICT for LU_DISTRICT.
4Define the following attributes:
Sales Rep:
@ID = sales_rep_id; @Desc = sales_rep_name
Tables: LU_SALES_REP (lookup), LVW_CURRENT_ORG, FACT_TABLE
Current District:
@ID = district_id; @Desc = district_name
Tables: LU_CURRENT_DISTRICT (lookup), LVW_CURRENT_ORG
Child: Sales Rep
Historical District:
@ID = district_id; @Desc = district_name
Tables: LU_DISTRICT (lookup), LU_SALES_REP, LVW_HIST_DISTRICT_SALES
Child: Sales Rep
Date:
@ID = date_id, trans_dt
Tables: LU_TIME (lookup) , FACT_TABLE, LVW_HIST_DISTRICT_SALES
Month:
@ID = MONTH_ID
Tables: LU_TIME (lookup)
5Define the Sales fact:
Expression: sales
Tables: FACT_TABLE, LVW_HIST_DISTRICT_SALES
6Define the metric as required:
Sales: SUM(sales)
The result of this is a logical schema that looks like the following:

As-was analysis

Specify the “as-was” analysis by using the Historical District attribute on reports:
Report definition: Historical District, Month, Sales
Resulting SQL
Select a11.District_ID District_ID,
max(a13.District_Name) District_Name,
a12.Month_ID Month_ID,
sum(a11.SALES) WJXBFS1
From (select District_ID, Trans_dt,sum(sales) sales
from LU_SALES_REP L
join FACT_TABLE F
on (L.Sales_rep_ID = F.Sales_rep_ID)
where F.trans_dt between L.EFF_DT and
L.END_DT
group by District_ID, Trans_dt)
a11
join LU_TIME a12
on (a11.Trans_dt = a12.Date_ID)
join LU_DISTRICT a13
on (a11.District_ID = a13.District_ID)
group by a11.Distrcit_ID,
a12.Month_ID
Report results

As-is analysis

Specify the “as-is” analysis by using the Current District attribute on reports:
Report definition: Current District, Month, Sales
Resulting SQL
select a12.District_ID District_ID,
max (a14.District_Name) District_Name,
a13.Month_ID Month_ID,
sum(a11.SALES) WJXBFS1
from FACT_TABLE a11
join (select Sales_rep_ID, District_ID
from LU_SALES_REP
where END_DT = '12/31/2099')a12
on (a11.Sales_Rep_ID =
a12.Sales_Rep_ID)
join LU_TIME a13
on (a11.Trans_dt = a13.Date_ID)
join LU_DISTRICT a14
on (a12.District_ID = a14.District_ID)
group by a12.District_ID,
a13.Month_ID
Report result

Example 2: New surrogate key for each changing element

A more flexible way to physically store a SCD is to employ surrogate keys and introduce new rows in the dimension table whenever a dimensional relationship changes. Another common characteristic is to include an indicator field that identifies the current relationship records. An example set of records is shown below.
LU_SALES_REP
Sales_Rep_CD
Sales_Rep_ID
Sales_Rep_Name
District_ID
Current_Flag
1
1
Jones
37
0
2
2
Smith
37
1
3
3
Kelly
38
0
4
4
Madison
38
1
5
1
Jones
39
1
6
3
Kelly
39
1
When using this type of dimensional lookup table, the fact table must also include the surrogate key. A transaction date field may or may not exist.
FACT_TABLE
Sale-Rep_CD
Sale
1
100
2
200
3
150
5
200
2
250
3
300
2
125
6
275
4
150

Specifying the MicroStrategy schema

1Create a logical view to represent just the current District-Sales Rep relationship.
LVW_CURRENT_ORG
select Sales_rep_ID, District_ID
from LU_SALES_REP
where Current_flag = 1
2Create a table alias LU_CURRENT_DISTRICT for LU_DISTRICT.
3Define the following attributes:
Sales Rep Surrogate:
@ID = sales_rep_cd
Tables: LU_SALES_REP (lookup), FACT_TABLE
Sales Rep:
@ID = sales_rep_id; @Desc = sales_rep_name
Tables: LU_SALES_REP (lookup), LVW_CURRENT_ORG
Child: Sales Rep Surrogate
Current District:
@ID = district_id; @Desc = district_name
Tables: LU_CURRENT_DISTRICT (lookup), LVW_CURRENT_ORG
Child: Sales Rep
Historical District:
@ID = district_id; @Desc = district_name
Tables: LU_DISTRICT (lookup), LU_SALES_REP
Child: Sales Rep
Date:
@ID = date_id, trans_dt
Tables: LU_TIME (lookup), FACT_TABLE
Month:
@ID = MONTH_ID
Tables: LU_TIME (lookup)
Child: Date
4Define the Sales fact:
Expression: sales
Tables: FACT_TABLE, LVW_HIST_DISTRICT_SALES
5Define the metric as required:
Sales: SUM(sales)
The result is a logical schema as follows:

As-was analysis

Specify the “as-was” analysis by using the Historical District attribute on reports:
Report definition: Historical District, Month, Sales
Resulting SQL
select a12.District_ID District_ID,
max(a14.Distrcit_Name) Distrcit_Name,
a13.Month_ID Month_ID,
sum(a11.SALES) WJXBFS1
from FACT_TABLE a11
join LU_SALES_REP a12
on (a11.Sales_Rep_CD =
a12.Sales_Rep_CD)
join LU_TIME a13
on (a11.Trans_dt = a13.Date_ID)
join LU_DISTRICT a14
on (a12.District_ID =
a14.District_ID)
group by a12.District_ID, 
a13.Month_ID
Report results

As-is analysis

Specify the “as-is” analysis by using the Current District attribute on reports:
Report definition: Current District, Month, Sales
Resulting SQL:
select a13.District_ID District_ID,
max(a15.Distrcit_Name) District_Name,
a14.Month_ID Month_ID,
sum(a11.SALES) WJXBFS1
from FACT_TABLE a11
join LU_SALES_REP a12
on (a11.Sales_Rep_CD =
a12.Sales_Rep_CD)
join (select Sales_rep_ID, District_ID
from LU_SALES_REP
where current_flag = 1) 
a13
on (a12.Sales_Rep_ID =
a13.Sales_Rep_ID)
join LU_TIME a14
on (a11.Trans_dt = a14.Date_ID)
join LU_DISTRICT a15
on (a13.District_ID =
a15.District_ID)
group by a13.District_ID,
a14.Month_ID
Report result

Comments

Popular posts from this blog

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

Execute Integrity manager test from Command line

Execute Integrity manager test from Command line  MSTR Integrity Manager allows the user to execute a test without having to load the GUI, or to schedule a test to run later at specific times or dates. Go over using Windows AT command at: https://support.microsoft.com/en-us/help/313565/how-to-use-the-at-command-to-schedule-tasks https://www.lifewire.com/at-command-2618090 Here are the prerequisites to execute a test from the command line: Create a test and saved using the Integrity Manager graphical interface. Make sure that the users has the ' Use Integrity Manager ' privilege for that project(provided by the administrator) and the ' Execute ' permission for the reports to be tested. Keep in mind that MicroStrategy Integrity Manager can only test three-tier projects, i.e., projects which are connected to a MicroStrategy i- Server. Projects in Direct Connection (two-tier) mode cannot be tested with this tool...

Create a transaction services photo uploader

Create a transaction services photo uploader   1.  Create a new table "photo_upload" in Tutorial warehouse database (the default location: C:\Program Files\MicroStrategy\Tutorial Reporting\TUTORIAL_DATA_7200.mdb), as shown below:    2. The 'photo_upload' table has to be pre-populated with *exactly* 10 rows of data, the values for the 'ID' column should be 1-10 and the values for the 'uploaded' column should all be 0 3.  In MicroStrategy Desktop, create a freeform report "R1" based on the new table "photo_upload" in Tutorial data created at step 1, as shown below:   SELECT Location, Description, ID, uploaded, numbers FROM PHOTO_UPLOAD 4.  Create another table for transaction insert SQL. Make sure to create an 'autonumber' type ID as primary key for this table, or auto_increment ID for different DBs.                     5. Create...

Configure Connection Mapping in Microstrategy

Configure Connection Mapping in Microstrategy The following steps demonstrate the second scenario where two different data warehouses are used within the same project: Create two different database connections -                                                                                        One that points to the data warehouse for the European users                                                                 and the other that points to the data warehouse for USA users as shown below: Select Europe as the default database connection for the database Instance as seen below: Go to P...

The logical table size calculation in Microstrategy

The logical table size calculation in Microstrategy The logical table size is an integer number that represents the granularity or level of aggregation of a particular table. It is called 'logical' because it is not related to the physical size of the tables (number of rows). It is calculated according to the attribute IDs that are present in the table and their level in the system hierarchy.   Even though, the number does not reveal the actual number of rows in the table, it is an accurate way of measuring a table size without having to access its contents.   MicroStrategy Engine utilizes an algorithm based on attribute keys to calculate the Logical Table Size (LTS):   Given the following tables:     The algorithm that calculates the table sizes performs the following steps: Calculate the number of levels per hierarchy: Hierarchy 1: 3 Hierarchy 2: 4 Calculate each attribute individual weight according to the level in the hierarchy (level in hierarchy/number of ...

Control the display of null and zero metric values

Show   Control the display of null and zero metric values in a grid report You can determine how to display or hide rows and columns in a grid report that consist only of null or zero metric values. You can have MicroStrategy hide the rows and columns in the following ways: Hide rows and columns that consist only of null metric values Hide rows and columns that consist only of zero metric values Hide rows and columns that consist only of null or zero metric values (default) Once you have defined how MicroStrategy hides null and zero metric values in the grid, you can quickly show or hide the grid using the Hide Nulls/Zeros option in the Data menu, as described below, or by clicking the  Hide Nulls/Zeros  icon  in the Data toolbar. To determine how null and zero metric values are displayed or hidden in a grid report Open the report in Edit mode. From the  Tools  menu, select  Report Options . The Report Options...

Reduce Intelligent Cube Size By Finding Intelligent Cube Objects Which Are Not In Use

Reduce Intelligent Cube Size By Finding Intelligent Cube Objects Which Are Not In Use If the i-cubes can potentially be reduced in size an audit can be performed on the cube objects to see which cube objects are not being used by any of the view reports, documents, or dossiers.   The below are examples for a few of the common metadata database platforms . NOTE: To perform this audit, queries are run against the MicroStrategy metadata database. Ensure a metadata backup is taken prior to performing the below actions. Steps: 1) Identify the object ID of the Intelligent cube to be audited by checking the objects Property window 2) Identify the object ID of the project this cube exists within by opening the Project Configuration Sample Cube ID =   CFAF1E9B4D53990698C42E87C7AF2EB5 Sample Project ID =  B7CA92F04B9FAE8D941C3E9B7E0CD754   3) Run the below SQL against the metadata database by replacing the Cube ID and Project ID within the respective ...

Joint child relationships in MSTR

Joint child relationships Some attributes exist at the intersection of other indirectly related attributes. Such attributes are called  joint children. Joint child relationships connect special attributes that are sometimes called  cross-dimensional attributes, text facts, or qualities. They do not fit neatly into the modeling schemes you have learned about thus far. These relationships can be modeled and conceptualized like traditional attributes but, like facts, they exist at the intersection of multiple attribute levels. Many source systems refer to these special attributes as  flags. Therefore, if flags are referenced in your source system documentation, these are likely candidates for joint child relationships. Joint child relationships are really another type of many-to-many relationship where one attribute has a many-to-many relationship to two otherwise unrelated attributes. For example, consider the relationship between three attributes: Promotion, Ite...