Skip to main content

Designing a Normalized Database

Designing a Normalized Database from Microsoft

Tables representing propositions about entities of one type (that is, representing a single set) are fully normalized. Correct and complete mapping of a conceptual ORM model to a logical model yields fully normalized tables. Properly designed entities in an ER model lead to fully normalized tables as well. However, both ORM and ER modeling start with the business description of a problem; it is possible to miss some dependencies between entities and leave some tables denormalized. Of course, there could also be a bug in the tool that produces the DDL script from the ORM and ER models. However, any denormalization can lead to update anomalies. Data integrity and consistency are fundamental for databases. Remember that a database holds propositions, and propositions are facts. If propositions are not true, they are not facts; they are falsehoods. You need a logical method that yields a fully normalized database.
Normalization is the process of redesigning the model to unbundle any overlapping entities. The process involves decomposition; however, decomposition cannot yield a loss of information. You perform the decomposition by applying a linear progression of rules called normal forms. Normalization eliminates redundancy and incompleteness. Note the part that designers frequently overlook: normalization eliminates incompleteness, not just redundancy. Many normal forms (NFs) are defined; the first six are called first NF, second NF, third NF, Boyce-Codd NF, fourth NF, and fifth NF. If a database is in fifth NF, the database is fully normalized. Only the first three NFs are important; usually, if a database is in third NF, it is in fifth NF as well. You should understand the normalization form and use it to perform a final check of your database design, checking the model you created by using other methods.

First Normal Form

Imagine a table such as the one that Table 2-2 shows. The table holds information about sales. In this case, only the OrderId column is part of the primary key.
Cc505842.table_C02623422_2(en-us,TechNet.10).png
Table 2-2 Table Before First NF
With a design like this, you can have the following anomalies:
  • Insert How do you insert a customer without an order?
  • Update If item Bo is renamed, how do you perform an update?
  • Delete If order 3 is deleted, the data for customer 2 is lost.
  • Select How do you calculate the total quantity of bolts?
Note that only update and select anomalies deal with redundancy: they are problematic because the table contains redundant data. Insert and delete anomalies deal with incompleteness of the model. The rule for first NF is, “A table is in first normal form if all columns are atomic.” This means there can be no multi-valued columns—columns that would hold a collection such as an array or another table. First NF is somewhat redundant with the definition of a relational table or of a relation. A table is a relation if it fulfills the following conditions:
  • Values are atomic. The columns in a relational table are not a repeating group or arrays.
  • Columns are of the same kind. All values in a column come from the same domain.
  • Rows are unique. There is at least one column or set of columns, the values of which uniquely identify each row in the table.
  • The order of columns is insignificant. You can share the same table without worrying about table organization.
  • The sequence of rows is insignificant. A relational table can be retrieved in a different order and sequence.
  • Each column must have a unique name. This is required because the order of columns is not significant.
You can see in the example in Table 2-2 that the last column is multi-valued; it holds an array of items. Before starting with decomposition, let us briefly review the textual notation of a relational table. Remember the earlier example proposition, “Lubor Kollar was employed by Tail-spin Toys on March 19, 2004.” In a general form, you can write “Employee with (Name) was employed by (Company) on (EmploymentDate).” This generalized form of a proposition is a predicate. Terms in parentheses are value placeholders (entity attributes). A predicate defines the structure of a table. You can write the structure briefly as:
Employees(EmpId, EmployeeName, CompanyId, EmploymentDate) 
Underlined columns form the primary key. Actually, they form a candidate key, and a table can have multiple candidate keys. You could underline all candidate keys and double underline the primary key.
You decompose the table shown in Table 2-2 on the Items column. Every item leads to a new row, and every atomic piece of data of a single item (ProductId, ProductName, Quantity) leads to a new column. After the decomposition, you have multiple rows for a single order; therefore, you have to expand the primary key. You can compose the new primary key from the OrderId and ProductId columns. However, suppose you can allow multiple products on a single order, each time with a different discount, for example. Thus, you cannot use ProductId as part of the primary key. However, you can add the ItemId attribute and use it as a part of the new primary key. A decomposed table in first normal form would look like this:
Orders(OrderId, CustomerId, OrderDate, ItemId, ProductId, Quantity, 
ProductName)
Before moving to second NF, you have to understand a common misconception about first NF. You might have heard or read that you should not have a repeating group of columns. However, this advice is incorrect; repeating groups means you should not have a repeating group (that is, a collection) in a single column. For example, imagine this table:
Employees(EmployeeId, EmployeeName, Child1, Child2)
This table is perfectly in first NF. This design has a built-in constraint, allowing only employees who have two children. If you do not allow unknown (NULL) values for the Child1 and Child2 attributes, then you allow employees with exactly two children. This kind of constraint is not typical for business; nevertheless, it is a constraint built into the model, which is in first NF. Such constraints are rare, and a repeating group of columns typically represents a hidden collection. Take care not to decompose such groups automatically before checking whether this is a special constraint.

Second Normal Form

After achieving first NF, the decomposed table from Table 2-2 looks like Table 2-3.
Cc505842.table_C02623422_3(en-us,TechNet.10).png
Table 2-3 Table in First NF
You still have the following anomalies:
  • Insert How do you insert a customer without an order?
  • Update If customer 1 changes the order date for order 1, how do you perform the update? (In many places, possible inconsistencies could exist.)
  • Delete If you delete order 3, the data for customer 2 is lost.
To achieve second NF, a table must be in first NF, and every non-key column must be fully functionally dependent on the entire primary key. This means that no column can depend on part of the primary key only. In the example in Table 2-3, you know the customer and the order date if you know the value of the OrderId column; you do not need to know anything about ProductId, which is part of the primary key. The CustomerId and OrderDate columns depend on part of the primary key only—OrderId. To achieve second NF, you need to decompose the table into two tables:
Orders(OrderId, CustomerId, OrderDate)
OrderDetails(OrderId, ItemId, ProductId, Quantity, ProductName)
In the Orders table, you leave attributes that depend on OrderId only; then you introduce a new table, OrderDetails, to hold the other attributes. When achieving first NF, you are converting values from a multi-valued attribute to rows and changing the primary key; for second and all other NFs, you decompose tables into more tables. Second NF deals with relationships between columns that are part of a key and other columns.
After decomposing to multiple tables, you must have some common value that enables you to join the tables in queries; otherwise, you would lose some information. The decomposition has to be lossless. Of course, you need relationships between tables. A relationship is an association between two or more tables. Relationships are expressed in the data values of the primary and foreign keys. A primary key is a column or columns in a table whose values uniquely identify each row in the table. A foreign key is a column or columns whose values are the same as the primary key of another table—in other words, a copy of the primary key from another relational table. The relationship is made between two relational tables by matching the values of the foreign key with the values of the primary key.

Third Normal Form

After achieving second NF, the decomposed tables from Table 2-3 look like the tables in Table 2-4 and Table 2-5. Note that in the Orders table (Table 2-4), another attribute, CustomerName, is added to show that normalization violations can appear in any table.
Cc505842.Table_C02623422_4(en-us,TechNet.10).png
Table 2-4 Orders Table in Second NF
Cc505842.Table_C02623422_5(en-us,TechNet.10).png
Table 2-5 OrderDetails Table in Second NF
Second NF solves the update anomaly (if customer 1 changes the order date for order 1); however, you still have the following anomalies:
  • Insert How do you insert a customer without an order?
  • Delete If you delete order 3, the data for customer 2 is lost.
To achieve third NF, a table must be in second NF, and every non-key column must be non-transitively dependent on the primary key. For example, in Table 2-4, from OrderId, you can find CustomerId; then from CustomerId, you can get transitively to the CustomerName attribute value. Similarly, in Table 2-5, you can get transitively to ProductName through Pro-ductId from OrderId and ItemId. If you think of the rule for third NF from the non-key attributes point of view, it simply means you should have no functional dependencies between non-key columns. Non-key columns must depend on keys only. In the examples in Table 2-4 and Table 2-5, CustomerName depends on CustomerId, and ProductName depends on Pro-ductId. Thus, to achieve third NF, you must create new tables for dependencies between non-key columns:
Customers(CustomerId, CustomerName) Orders(OrderId, CustomerId, OrderDate) 
Products(ProductId, ProductName) 
OrderDetails(OrderId, ItemId, ProductId, Quantity)
This schema is free from all the update anomalies you had before normalization. However, it is not free from all update anomalies. For example, the schema itself cannot prevent you from inserting an unreasonable order date. (You will learn more about additional constraints in Chapter 3, “Designing a Physical Database.”) Note that this schema is also essentially the same (except for a couple of attributes omitted for the sake of brevity) as you received by using the ORM and ER approach. As mentioned earlier, use normalization for final checking and refining of your model.

Practice: Normalizing the Database

You are developing a database model that will support an application for managing projects (as in the Quick Check in Lesson 1, “Systematically Approaching Design Stages”). You collect the following information: each project has a single customer, each project can have many activities, and each project can have many employees assigned to it. You want to follow time spent (in hours) on projects by specific employee by activity for each day. Your initial design is:
Projects(ProjectId, ProjectName, CustomerId, CustomerName,
Activities(Activity1Id, Activity1Name, …, ActivityNId, 
ActivityNName), Employees(Employee1Id, Employee1Name, …, 
EmployeeNId, EmployeeNName), WorkDate, TimeSpent)

Exercise 1: Achieve the First Normal Form

In this exercise, you will bring this model to first NF. To achieve first NF, you need to eliminate all attributes that are collections.
  1. Check the Activities part of the table. Is this a collection?
  2. Check the Employees part of the table. Is this a collection? Your model should look like this:
Projects(ProjectId, ItemId, ProjectName, CustomerId, CustomerName, 
        ActivityId, ActivityName, EmployeeId, EmployeeName, WorkDate, 
        TimeSpent)

Exercise 2: Achieve the Second Normal Form

In this exercise, you will bring this model to second NF. To achieve second NF, you must make sure your model does not contain attributes that depend on only part of the primary key.
  1. The complete primary key in the table you created in Exercise 1, “Achieve the First Normal Form,” consists of ProjectId and ItemId.
  2. Do you really need both columns to find CustomerId and CustomerName associated with a project?
Your model should look like this:
Projects(ProjectId, ProjectName, CustomerId, CustomerName) 
        ProjectDetails(ProjectId, ItemId, ActivityId, ActivityName, 
        EmployeeId, EmployeeName, WorkDate, TimeSpent)

Exercise 3: Achieve the Third Normal Form

In this exercise, you will bring this model to third NF. To achieve third NF, you need to look at dependencies between non-key attributes.
  1. Is there any dependency between CustomerId and CustomerName?
  2. Is there any dependency between ActivityId and ActivityName?
  3. Is there any dependency between EmployeeId and EmployeeName? Your model should now look like this:
Projects(ProjectId, ProjectName, CustomerId)
       ProjectDetails(ProjectId, ItemId, ActivityId, EmployeeId, 
       WorkDate, TimeSpent) 
Customers(CustomerId, CustomerName) 
Activities(ActivityId, ActivityName)
Employees(EmployeeId, EmployeeName) 

Comments

Popular posts from this blog

Apply or Pass-through functions in Microstrategy

Ap ply (Pass-Through) functions MSTR Apply functions provide access to functions or syntactic constructs that are not standard in MicroStrategy but are provided by various RDBMS systems.. Syntax common to Apply functions Apply Function Name   ("expression with placeholders", Arg1, Arg2, Arg3, …ArgN) where: Apply Function Name  – is a generic name used for the predefined pass-through functions described above expression with placeholders  – is the string describing the actual expression or syntax that the engine uses while generating the SQL and which is sent to the RDBMS. The placeholders are represented by #0, #1, and so on. "#" is a reserved character for MicroStrategy. Arg  – is an argument that replaces the parameter markers in the pattern. Arg1 replaces #0, Arg2 replaces #1, and so on. There are   five  pre-defined Apply functions to replace regular, predefined functions of the same type. For more details, cli...

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Custom Tooltips in Microstrategy developer and Web

Custom Tooltips in Microstrategy developer and Web The following table describes the macros you can use to customize graph tooltips in both MicroStrategy Developer and MicroStrategy Web: Macro Information Displayed {&TOOLTIP} All relevant labels and values associated with a graph item. {&GROUPLABEL} Name of the graph item's category. This value is often the graph item's attribute element information, as attributes are commonly used as the categories of graph reports. {&SERIESLABEL} Name of the graph item’s series. This value is often the graph item's metric name information, as metrics are commonly used as the series of graph reports. {&VALUE} The value of a given data point. {&XVALUE} The X-value of a data point. Only applicable to Bubble charts and Scatter plots. {&YVALUE} The Y-value of a data point. Only applicable to Bubble charts and Scatter plots. {&ZVALUE} The Z-value of a data point. Only applicable to Bubble charts and Scatter plots. {...

Microstrategy "Error type: Odbc error. Odbc operation attempted

 "Error type: Odbc error. Odbc operation attempted: SQLExecDirect. [HYT00:0: on SQLHANDLE] [MicroStrategy][ODBC Oracle Wire Protocol driver]Timeout expired" is shown when executing reports from Web When users are trying to execute some reports in MicroStrategy web in particular, they may receive the Error “SQL Generation Complete Index out of range” and “Timeout expired” error as shown below: Possible Causes: One possible cause is that the MicroStrategy Intelligence Server using a cached database connection that was already dropped by the RDBMS. To resolve this: Admin should delete the database connection caches and create a new DSNs in case they are sharing DSNs to connect to different databases. In addition, change the settings for the ‘Connection lifetime’ and the ‘Connection idle time out’.  Follow the steps below to perform the mentioned changes and verify the report after each step and some of the settings require i-server r...

Export a Report Services document to Excel with formatting using URL API

Export a Report Services document to Excel with formatting using URL API in MSTR Web In order to export a document in excel format using the URL API, the executionMode must be set to 4.  If excutionMode is not provided in the URL, by default PDF will be used as executionMode.   Below are the list of parameters that the URL must contain in order to execute correctly.   evt= 3069 src= Main.aspx.3069 executionMode= 4 documentID= 7E1644CA424F482DA811569FCE8127FF( Replace the document Id with your document ID)   Sample URL for .NET environment: http://WebServerName/MicroStrategy/asp/Main.aspx?evt=3069&src=Main.aspx. 3069 &executionMode= 4 &documentID= 7E1644CA424F482DA811569FCE8127FF    

RunningSum calculation only on the metric subtotal in MicroStrategy

RunningSum calculation only on the metric subtotal in MicroStrategy Here are the series of steps to setup report objects in which metrics and subtotals so only the  subtotal field  will contain the  RunningSum  and the  regular metric values  will be  standard sum values . 1) Create Metric 1 which is the sum of the fact that is to be in the columns. 2) Create Metric2 as the RunningSum of Metric1.  NOTE:  The  sortby  parameter for the RunningSum should be set to whichever attribute you want the report sorted by. 3) Create Metric3 as Metric1 + (Metric2 x 0) 4) Create a new subtotal called "Max" which is defined as Max() 5) On the Subtotals/Aggregation tab for Metric 3, set the Total subtotal function to be "Max" and select the check box for "Allow Smart Metric" 6) Create the desired report and place the 3 metrics on the report.  NOTE:  Only Metric3 is required on the gri...

Microstrategy Caches explained

Microstrategy Caches Improving Response Time: Caching A  cache is a result set that is stored on a system to improve response time in future requests.  With caching, users can retrieve results from Intelligence Server rather than re-executing queries against a database. To delete all object caches for a project 1 In Developer, log into a project. You must log in with a user account that has administrative privileges. 2 From the  Administration  menu, point to  Projects , and then select  Project Configuration . The Project Configuration Editor opens. 3 Expand  Caching , expand  Auxiliary Caches , then select  Objects . To delete all configuration object caches for a server 1 Log in to the project source. 2 From the  Administration  menu in Developer, point to  Server , and then select  Purge Server Object Caches . 4 Click  Purge Now . To purge web cache follow the steps in the link ...

Update the data on an Intelligent Cube without having to republish the entire cube in MicroStrategy

Update the data on an Intelligent Cube without having to republish the entire cube in MicroStrategy MicroStrategy has introduced a feature known as, Incremental Refresh Options, which allow Intelligent Cubes to be updated based on one or more attributes, by setting up incremental refresh settings to update the Intelligent Cube with only new data. This can reduce the time and system resources necessary to update the Intelligent Cube periodically versus a full republish. For example, if a user has an Intelligent Cube that contains weekly sales data, the user may want this Intelligent Cube to be updated at the end of every week with the sales data for that week. By setting up incremental refresh settings, he can make it so that only data for one week is added to the Intelligent Cube, without affecting the existing data and without having to reload all existing data. Users can select t...

Microstrategy Document Autotext macros:

Autotext  code/macros in  Microstrategy Document/dashboard This is a list of the available auto text macros that the Report Services Document engine recognizes. The following auto text codes allow you to add  document variable information to your document. These auto text codes are automatically replaced by information about the document. Auto text codes for MSTR document/dashboard:  AUTOTEXT DESCRIPTION   {&PAGE}  Display the current page.  {&NPAGES}  Display the total number of pages.  {&DATETIME}  Display the current date and time.  {&USER}  Display the user name that is executing the Report Services Document.  {&DOCUMENT}  Display the document name.  {&DOCUMENTID}  Display the document ID.  {&DESCRIPTION}  Display the document description.  {&PROJECT}  Display the project name.  {&EXECUTIONTIME}  Dis...