Skip to main content

Fact tables levels tables in Microstrategy explained

Fact tables levels in Microstrategy:

Fact tables are used to store fact data. Fact tables should contain attribute Id's and fact values which are measurable. All the descriptive information about the fact tables should stored in Dimension tables either in Star Schema fashion or Snow Flake Schema fashion which is best suited to your reporting solution.

Since attributes provide context for fact values, both fact columns and attribute ID columns are included in fact tables. Facts help to link indirectly related attributes using these attribute ID columns. The attribute ID columns included in a fact table represent the level at which the facts in that table are stored. So the level of a fact table in the Fact_Item_Day_Customer can be the attribute Id's which is at Day, Item & Customer Id level.

For example, fact tables containing sales and inventory data look like the tables shown in the following diagram:

Base fact columns versus derived fact columns

The types of fact columns are base fact columns and derived fact columns:
Base fact columns are represented by a single column in a fact table. The following diagram shows an example of a fact table and base fact columns:
Derived fact columns are created through a mathematical combination of other existing fact columns. The following diagram shows an example of a fact table and how you can create a derived fact column from base fact columns:
In the example, the derived fact Tot_Dollar_Sales is created using the Qty_Sold, Unit_Price, and Discount fact columns. Also, the derived fact exists in several tables, including Item_Mnth_Sls and City_Ctr_Sls.
Because facts in different fact tables are typically stored at different levels, derived fact columns can only contain fact columns from the same fact table.
There are advantages and disadvantages to consider when deciding if you should create a derived fact column. The advantage of storing derived fact columns in the warehouse is that the calculation of data is previously performed and stored separately, which translates into simpler SQL and a speedier query at report run time. The disadvantage is that derived fact columns require more storage space and more time during the ETL process.
You can create the same type of data analysis in MicroStrategy with the use of metrics. Metrics allow you to perform calculations and aggregations on fact data from one or more fact columns. For more information on what metrics are and how to create them, see the Advanced Reporting Guide.
For more information on the different types of facts in MicroStrategy and how they are defined, see How facts are defined .

Fact table levels: The context of your data

Facts and fact tables have an associated level based on the attribute ID columns included in the fact table. For example, the following image shows two facts with an Item/Day/Call Center level.
The Item_id, Day_id, and Call_Ctr_id columns in the table above represent practical levels at which sales and inventory data can be analyzed on a report. The Sales and Inventory facts can be analyzed at the item, day, and call center levels because those levels exist as ID columns in the fact table.
You do not need to include more lookup column IDs than are necessary for a given fact table. For example, notice that the table above does not include the Customer_id column; this is because analyzing inventory data at the customer level does not result in a practical business calculation. Fact tables should only include attribute ID columns that represent levels at which you intend to analyze the specific fact data.

The levels at which facts are stored become especially important when you begin to have complex queries with multiple facts in multiple tables that are stored at levels different from one another, and when a reporting request involves still a different level. You must be able to support fact reporting at the business levels which users require.

For more details on the level of aggregation of your fact data, you could go through 💨💨💨💨💨💨Fact table levels: The context of your data.

Comments

Post a Comment

Popular posts from this blog

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Reduce Intelligent Cube Size By Finding Intelligent Cube Objects Which Are Not In Use

Reduce Intelligent Cube Size By Finding Intelligent Cube Objects Which Are Not In Use If the i-cubes can potentially be reduced in size an audit can be performed on the cube objects to see which cube objects are not being used by any of the view reports, documents, or dossiers.   The below are examples for a few of the common metadata database platforms . NOTE: To perform this audit, queries are run against the MicroStrategy metadata database. Ensure a metadata backup is taken prior to performing the below actions. Steps: 1) Identify the object ID of the Intelligent cube to be audited by checking the objects Property window 2) Identify the object ID of the project this cube exists within by opening the Project Configuration Sample Cube ID =   CFAF1E9B4D53990698C42E87C7AF2EB5 Sample Project ID =  B7CA92F04B9FAE8D941C3E9B7E0CD754   3) Run the below SQL against the metadata database by replacing the Cube ID and Project ID within the respective ...

Create a transaction services photo uploader

Create a transaction services photo uploader   1.  Create a new table "photo_upload" in Tutorial warehouse database (the default location: C:\Program Files\MicroStrategy\Tutorial Reporting\TUTORIAL_DATA_7200.mdb), as shown below:    2. The 'photo_upload' table has to be pre-populated with *exactly* 10 rows of data, the values for the 'ID' column should be 1-10 and the values for the 'uploaded' column should all be 0 3.  In MicroStrategy Desktop, create a freeform report "R1" based on the new table "photo_upload" in Tutorial data created at step 1, as shown below:   SELECT Location, Description, ID, uploaded, numbers FROM PHOTO_UPLOAD 4.  Create another table for transaction insert SQL. Make sure to create an 'autonumber' type ID as primary key for this table, or auto_increment ID for different DBs.                     5. Create...

Create an alert-based subscription in MicroStrategy Distribution Services

Create an alert-based subscription in MicroStrategy Distribution Services on Web Subscription to a report or Report Services document which will be executed when a certain conditional threshold is met based on another executing report. For example, a scheduled report executes which shows the Revenue by day for the past week. If the Revenue on any one day falls below a certain value, a subscription to another report or Report Services document can be triggered and delivered to a recipient. An alert based subscription can only be created directly on a report; however, another report or Report Services document can be delivered when the alert based subscription is triggered. Note: you need a grid report to create an alert and you cannot create if you want to create on a document with text boxes. The following example will walk through the basic steps on how to setup a subscription based on an alert like this: Follow the brief  steps bel...

Scheduling a report or document to be sent to an FTP in MSTR

Scheduling a report or document to be sent to an FTP server You can have a report or document automatically delivered to a location on your FTP server on a specific schedule. To do so, you must subscribe to the report or document, as described in the steps below. You can customize your subscription by typing macros in the  File Name ,  Sub-folder , or  Zip File Name  fields. These macros are automatically replaced with the appropriate text when the report or document is delivered. For example, you create a subscription to a document. If you type  {&Project}  in the  File Name field, the name of the project in which the document is saved is displayed in the name of the document when it is delivered. • This procedure assumes that an administrator has already added your FTP server as a new device in Developer. Steps to do so are included in the  System Administrator Help . To send a report or document to an FTP server on a schedule ...

Microstrategy "Error type: Odbc error. Odbc operation attempted

 "Error type: Odbc error. Odbc operation attempted: SQLExecDirect. [HYT00:0: on SQLHANDLE] [MicroStrategy][ODBC Oracle Wire Protocol driver]Timeout expired" is shown when executing reports from Web When users are trying to execute some reports in MicroStrategy web in particular, they may receive the Error “SQL Generation Complete Index out of range” and “Timeout expired” error as shown below: Possible Causes: One possible cause is that the MicroStrategy Intelligence Server using a cached database connection that was already dropped by the RDBMS. To resolve this: Admin should delete the database connection caches and create a new DSNs in case they are sharing DSNs to connect to different databases. In addition, change the settings for the ‘Connection lifetime’ and the ‘Connection idle time out’.  Follow the steps below to perform the mentioned changes and verify the report after each step and some of the settings require i-server r...

Super Cubes in MicroStrategy 2019

Super Cubes in MicroStrategy 2019 Beginning in MicroStrategy 11.0 and 2019, users will notice objects referred to as " Super Cubes ".  Super Cubes are simply a renaming of what was previously referred to as MTDI (Multi Table Data Import) Cubes. Note that only the naming convention has changed, as the functionality remains the same . This name change is visible in MicroStrategy Workstation and MicroStrategy Web. In MicroStrategy Workstation, right click on any cube created via Data Import and select Properties . The object Type is listed as Super Cube: This can also be seen when editing or authoring a dossier. In your Datasets panel, hover over the name of your dataset. The tooltip will show the dataset type listed as a Super Cube.

exact string when searching for elements in an element prompt in MicroStrategy

When a user types in keywords to tries to find element names in an element prompt, the search returns all objects containing the keywords in MicroStrategy Developer 9.4.x-10.x. However, the user would like to search for the exact phrase. It is suggested to use quotes to get exact phrase when there is a space between. Like "Black Panther" Using the MicroStrategy Tutorial Project as an example, a user wishes to search for an item named Minolta Maxxum Camera. The search results for Minolta Maxxum Camera return all items containing any or all of those words, as shown below: CAUSE: This occurs due to the search defaulting to 'ORing' the search terms. This means that any or all keywords that match the strings will be returned. The SQL for this search is shown below: SELECT ITEM_NAME FROM LU_ITEM WHERE (ITEM_NAME LIKE '%Minolta%' OR ITEM_NAME LIKE '%Maxxum%' OR ITEM_NAME LIKE '%Camera%') ACTION: To match an exact string, use...

Predictive modelling in Data Science using Microstrategy

Creating a predictive modelling in MicroStrategy MicroStrategy Data Mining Services has been evolving to include more data mining algorithms and functionality. One key feature is MicroStrategy Developer’s Training Metric Wizard. The Training Metric Wizard can be used to create several different types of predictive models including linear and exponential regression, logistic regression, decision tree, cluster, time series, and association rules. Linear and exponential regression The linear regression data mining technique should be familiar to you if you have ever tried to extrapolate or interpolate data, tried to find the line that best fits a series of data points, or used Microsoft Excel’s LINEST or LOGEST functions. Regression analyzes the relationship between several predictive inputs, or independent variables, and a dependent variable that is to be predicted. Regression finds the line that best fits the data, with a minimum of error. For example, you have a dataset ...

Star Schemas issue fixes in Modelling of Microstartegy

Star Schemas issue fixes in Modelling of Microstartegy Explanation This schema is characterized by one lookup table per dimension, with base tables at the lowest level. This is the fastest way to set up a data warehouse: This type of schemas is supported but has restrictions such as when adding aggregate tables: Problem Double counting. According to the diagram above, a report that contains month and the a metric SUM(SALES_AMT) will go to the aggregate table and join to the column to retrieve the description from the table. Since the column is not unique in its lookup table, the results will appear duplicated. Recommendation MicroStrategy engine is optimized to work with snowflake schemas, where each attribute level has a distinct lookup table. Star schemas are supported with restrictions, as long as fact tables are not at a higher level than the dimension tables to which they are joined. Consult the following MicroStrategy Knowledgebase document for further information....