Skip to main content

Filtering for a Level Metric


What is filtering for a level metric?
The filtering setting for a level metric governs the relationship between the report filter and the calculation of the metric. The filtering options are:
  1. Standard filtering - allows the report filter to interact as usual in the metric calculation. The metric calculates only for the elements found in the filter definition. The filter criteria for the report is found in the WHERE clause of the SQL statement which calculates the metric in question.
  2. Absolute filtering - changes the filter on descendents of the target. It raises it to the level of the target, if possible.
    • If the attribute in the metric filter is a parent of the attribute in the report filter, calculations are performed only on elements to which the report filter applies.
    • If the attribute in the metric filter is of the same level or a child of the attribute in the report filter, calculations occur as specified by the report filter. Absolute filtering influences what is displayed on the report, not its calculations. It includes the report criteria in a subquery rather than in the WHERE clause itself.
  3. Ignore filtering - omits filtering criteria based on the attribute in the target and its related attributes (parents and children). The report filter does not appear anywhere in the SQL for a metric with this setting.
  4. None - can be summarized as unspecified-the filtering behavior for the target is not determined by this component. Instead, the target and group components of this level unit define the filter.
    • If the report includes an attribute in the same hierarchy as that indicated by the metric filter, aggregation takes place at the level of that attribute.
    • If the report does not include other attributes in the same hierarchy as that indicated by the metric filter, aggregation defaults to the "Absolute" option.
How Absolute and Ignore Filtering modify the results of the report:
Take for example the following report and metric:
Report Filter: Year = 2004

Attributes: Quarter & Month

Metric: Level Profit

external image TN5700-8X-2537_1.jpg

external image TN5700-8X-2537_2.jpg

Because the Filtering is currently set to standard, then the report filter will interact with the metric calculation normally and apply the filter to the metric.
Now if the Filtering is changed to absolute, then again, nothing will change. Because the target is set at the Report Level, then the level of the target is not raised and the results remain unchanged.
However, if the Filtering is set to Ignore, then the Report Filter is ignored and additional 2003 data is displayed for the Level Profit as shown below:
external image TN5700-8X-2537_3.jpg

This is because ignore Filtering will remove any report filters that are related to the target (parent or child). Because the Target is Report Level, which is the Month & Quarter, and Year is a parent of both of those, it is removed.
For more examples regarding Level Metrics, refer to the 'Level Metrics' sectino of the Advanced Reporting Guide.

Comments

Popular posts from this blog

Control the display of null and zero metric values

Show   Control the display of null and zero metric values in a grid report You can determine how to display or hide rows and columns in a grid report that consist only of null or zero metric values. You can have MicroStrategy hide the rows and columns in the following ways: Hide rows and columns that consist only of null metric values Hide rows and columns that consist only of zero metric values Hide rows and columns that consist only of null or zero metric values (default) Once you have defined how MicroStrategy hides null and zero metric values in the grid, you can quickly show or hide the grid using the Hide Nulls/Zeros option in the Data menu, as described below, or by clicking the  Hide Nulls/Zeros  icon  in the Data toolbar. To determine how null and zero metric values are displayed or hidden in a grid report Open the report in Edit mode. From the  Tools  menu, select  Report Options . The Report Options...

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

Microstrategy Report Pre and Post Statements

Microstrategy Report Pre and Post Statements Report Post Statement The Report Post Statement settings insert custom SQL statements after the final SELECT statement but before the DROP statements. The settings are numbered 1-5. Each text string entered in Report Post Statement 1 through Report Post Statement 4 is executed separately as a single statement. To execute more than five statements, insert multiple statements in Report Post Statement 5, separating each statement with a semicolon (;). The SQL Engine breaks them into individual statements at the semicolons and executes each separately. The custom SQL is applied to every intermediate table or view. Report Pre Statement The Report Pre Statement settings insert custom SQL statements at the beginning of the report SQL. The settings are numbered 1-5. Each text string entered in Report Pre Statement 1 through Report Pre Statement 4 is executed separately as a single statement. To execute more than five statem...

Disable data blending in MicroStrategy

Disable data blending in MicroStrategy Starting in MicroStrategy 9.4 data blending was made available for documents and dashboards. This permits grid, graph and widget objects to source data from multiple different datasets at the same time.  This is available under the analytical engine VLDB properties inside of project configuration. The property is named "document grids from multiple datasets" and defaults to enabled but can be set to disabled.  Below are the steps to enable/disable the settings of data blending: 1. Go to project configuration by right clicking on specific project(You need admin rights to do this). 2. In the Project configuration windows as shown below select Configure under Project level VLDB settings section. 3. Now it will open the VLDB settings window, select + on " Analytical Engine Settings " and then click on " Document Grids from multiple datasets " option. You will be presented with two...

Apply or Pass-through functions in Microstrategy

Ap ply (Pass-Through) functions MSTR Apply functions provide access to functions or syntactic constructs that are not standard in MicroStrategy but are provided by various RDBMS systems.. Syntax common to Apply functions Apply Function Name   ("expression with placeholders", Arg1, Arg2, Arg3, …ArgN) where: Apply Function Name  – is a generic name used for the predefined pass-through functions described above expression with placeholders  – is the string describing the actual expression or syntax that the engine uses while generating the SQL and which is sent to the RDBMS. The placeholders are represented by #0, #1, and so on. "#" is a reserved character for MicroStrategy. Arg  – is an argument that replaces the parameter markers in the pattern. Arg1 replaces #0, Arg2 replaces #1, and so on. There are   five  pre-defined Apply functions to replace regular, predefined functions of the same type. For more details, cli...

mstrio – Python and R wrappers for the MicroStrategy

mstrio – Python and R wrappers for the MicroStrategy REST APIs Connecting to MicroStrategy  Create a connection to the Intelligence Server using   Connection()   and    connect()  in Python and R, respectively. Required arguments for the   Connection()  function are the URL for the MicroStrategy REST API server, MicroStrategy Intelligence Server username and password, as well as the MicroStrategy project name. By default, the   connect()  function anticipates your MicroStrategy Intelligence Server username and password. LDAP authentication is also supported. Use the optional argument    login_mode=16    in the    connect()  function for LDAP authentication.  Extract data from cubes and reports  To extract data from MicroStrategy cubes and reports, use the   get_cube()  and   get_report()  functions. Use...

Microstrategy Caches explained

Microstrategy Caches Improving Response Time: Caching A  cache is a result set that is stored on a system to improve response time in future requests.  With caching, users can retrieve results from Intelligence Server rather than re-executing queries against a database. To delete all object caches for a project 1 In Developer, log into a project. You must log in with a user account that has administrative privileges. 2 From the  Administration  menu, point to  Projects , and then select  Project Configuration . The Project Configuration Editor opens. 3 Expand  Caching , expand  Auxiliary Caches , then select  Objects . To delete all configuration object caches for a server 1 Log in to the project source. 2 From the  Administration  menu in Developer, point to  Server , and then select  Purge Server Object Caches . 4 Click  Purge Now . To purge web cache follow the steps in the link ...

Microstrategy Custom number formatting symbols

Custom number formatting symbols If none of the built-in number formats meet your needs, you can create your own custom format in the Number tab of the Format Cells dialog box. Select  Custom  as the Category and create the format using the number format symbols listed in the table below. Each custom format can have up to four optional sections, one each for: Positive numbers Negative numbers Zeros Text Each section is optional. Separate the sections by semicolons, as shown in the example below: #,###;(#,###);0;"Error: Entry must be numeric" For more examples, see  Custom number formatting examples . To jump to a section of the formatting symbol table, click one of the following: Numeric symbols Character/text symbols Date and time symbols Text color symbols Currency symbols Conditional symbols Numeric symbols For details on how numeric symbols apply to the Big Decimal data type, refer to the  Project Design Guide . ...

Prompt-in-prompt(Nested Prompts) in Microstrategy

Prompt-in-prompt(Nested Prompts) in  Microstrategy Nested prompts allows you to create one prompt based on the other and other bases on another, nested prompts allows us to prompt the highest level(Like year) to middle level(like Quarter, then to the low level(like Month). Here you can see how to  create a 3-level deep nested prompt that will prompt the user to select a year, then a quarter within that year, then a month within that quarter. Prompt-in-prompt is a feature in which the answer to one prompt is used to define another prompt. This feature is only implemented for element list prompts . The following procedure describes how to achieve this: Create the highest level filter. This is a filter which contains a prompt on an attribute element list. Create a filter on the attribute "Year." Click "prompt on attribute element list" and click "Next" through the rest of the screens to accept the default values. Do not set any additio...

Update the data on an Intelligent Cube without having to republish the entire cube in MicroStrategy

Update the data on an Intelligent Cube without having to republish the entire cube in MicroStrategy MicroStrategy has introduced a feature known as, Incremental Refresh Options, which allow Intelligent Cubes to be updated based on one or more attributes, by setting up incremental refresh settings to update the Intelligent Cube with only new data. This can reduce the time and system resources necessary to update the Intelligent Cube periodically versus a full republish. For example, if a user has an Intelligent Cube that contains weekly sales data, the user may want this Intelligent Cube to be updated at the end of every week with the sales data for that week. By setting up incremental refresh settings, he can make it so that only data for one week is added to the Intelligent Cube, without affecting the existing data and without having to reload all existing data. Users can select t...