Skip to main content

Joint Child Relationships in MSTR

Some attributes exist at the intersection of other indirectly related attributes. Such attributes are called joint children.

Joint child relationships connect special attributes that are sometimes called cross-dimensional attributes, text facts, or qualities. They do not fit neatly into the modeling schemes you have learned about thus far. These relationships can be modeled and conceptualized like traditional attributes but, like facts, they exist at the intersection of multiple attribute levels.
Many source systems refer to these special attributes as flags. Therefore, if flags are referenced in your source system documentation, these are likely candidates for joint child relationships.
Joint child relationships are really another type of many-to-many relationship where one attribute has a many-to-many relationship to two otherwise unrelated attributes. For example, consider the relationship between three attributes: Promotion, Item, and Quarter. In this case, Promotion has a many-to-many relationship to both Item and Quarter, as shown in the following diagram.
external image AdvDataModel_PIQ.gif
An example of a promotion might be a “Red Sale” where all red items are on sale. A business might run this promotion around Valentine's Day and again at Christmas time.

Supporting joint child relationships

One way to resolve a many-to-many relationship is to have a relationship table for the attributes involved in the many-to-many relationships. In this case, you might create two relationship tables, one to relate Promotion and Item. The second relates Promotion and Quarter as shown in the following diagram.
external image AdvDataModel_PIQ2.gif
These two tables are sufficient to answer questions such as:

What items have been in what promotions?


What quarters have had what promotions?
However, these tables are not sufficient to answer the following more detailed and insightful questions:

What items were in what promotions in a given quarter?


In what quarters was a certain item involved in a certain type of promotion?
To answer these questions, you must combine the two relationship tables, creating one table to relate all three attributes.
The relationship in the distinct relationship table must exist for a joint child relationship to be properly defined. However, it does not necessarily have to be in its own, distinct relationship table. Defining the relationship directly in the lookup table for the parent of the joint child—in this case, Promotion—would be fine. Alternatively, you can build the relationship directly into the fact table.
In these examples, it is important to notice the relationship between the three attributes. The Promotion attribute is related to a particular Item-Quarter pair, as opposed to it being related to Item and Quarter separately. This is the essence of a joint child relationship and is shown in the following diagram.
external image joint_child_relationships.gif
Notice that a joint child relationship can be one-to-many or many-to-many. The issues with many-to-many relationships, including loss of analytical capability and multiple counting, also apply to many-to-many joint child relationships.
If you have a joint child relationship in your data, it is important for you to define it in MicroStrategy so that you get the correct data for reports that use the parent attribute in a joint child attribute. This ensures that when you need to join the fact table to the parent attribute of a joint child relationship (for example, to see sales by promotion) the join will always use both joint children rather than just one or the other.

Supporting many-to-many and joint child relationships

Two forms of attribute relationships, many-to-many relationships and joint child relationships, can introduce additional complexity to the schema and warehouse design process. The following sections discuss the considerations you must make to ensure an effective warehouse design in light of the unique nature of these relationships.
While the topics are largely related to logical model design, a working knowledge of physical schemas is helpful when dealing with the challenges involved with these topics.
Before reading this section, you should know what logical data models and physical warehouse schemas are, and how to read and interpret them. Logical data models and physical warehouse schemas are discussed in The Logical Data Model and Warehouse Structure for Your Logical Data Model respectively. These chapters discuss how to plan and create a conceptual framework for your business intelligence data.

Many-to-many relationships

The presence of many-to-many relationships introduces complexity during the warehouse design process. With the presence of many-to-many relationships, you must make additional considerations to effectively plan your design.
Below are some real-life examples of many-to-many relationships which must be carefully handled in the data model and schema:

In a certain organization, each salesperson can work in more than one calling center. Likewise, each calling center has many salespeople.


In a car manufacturing plant, many models of cars are produced, and each comes in several colors. That is, there are many colors for a single type of car, and many types of cars can be associated with the same color.
The following sections use the example of items and colors to demonstrate a many-to-many relationship and the options you have for dealing with them. One item can come in many colors, such as red hats, blue hats, and green hats, and one color can be associated with many items, such as red dress, red hat, red shoes, and red socks.
Potential problems with many-to-many relationships usually come in the following forms, both of which can be avoided by correctly modeling the relationship:

Loss of analytical capability


Multiple counting

Loss of analytical capability

With the color and item many-to-many relationship, there are usually two business questions for which users want answers:

In what colors are certain items available?


How much of a particular item/color combination was sold?
Answering the first question requires a table that contains a list of all possible item/color combinations. Recall that one-to-many relationships are usually in the child’s lookup table.
In many-to-many relationships this is not feasible. Rather, a distinct relationship table needs to be present in your warehouse. The following diagram shows the lookup and relationship tables for item and color:
external image color_item_relate_table.gif
The Rel_Color_Item table provides a row for every possible item/color combination.
Answering the second question requires a fact table that has sales information as well as color and item information. The following diagram shows the same scenario as before, but in addition it shows a simple fact table containing sales data keyed by item, color, and date.
external image color_item_relate_fact.gif
The fact table in the above diagram alone is not sufficient to answer the first question. Only item and color combinations that were actually sold, and therefore have sales recorded, can be retrieved from this table. If you have item and color combinations that are available but that have never been sold, this fact table cannot provide a complete list of item and color combinations to answer question one.
In summary, to prevent any loss of analytical flexibility when dealing with a many-to-many attribute relationship, the following requirements must be met:

A distinct relationship table to identify all the possible combinations of attribute elements between attributes


Both the attribute ID columns in the fact table
You can implement the above points in several different ways, which are discussed in Working with many-to-many relationships.

Multiple counting

When dealing with many-to-many relationships, loss of analytical capability is only one challenge. Another equally significant issue is multiple counting. Multiple counting occurs when all of the following takes place:

You attempt to aggregate data to the level of one of the attributes in the many-to-many relationship, or a higher level than one of the attributes in the many-to-many relationship.


The relationship exists in a distinct relationship table.


All of the attributes in the many-to-many relationship are not in the fact table.
Recall the example from above, but make the following change: remove color from the fact table.
external image multiple_counting.gif
Assume that there are three items, including hats, dresses, and socks. These items come in three colors, including red, blue, and green, with the exception of socks, which come in only green and blue. The following diagram shows this data in the lookup tables as well as some simple sales data:
external image multiple_counting2.gif
The risk of multiple counting occurs when you run a query requesting the sales by color, effectively aggregating to the item attribute level in the many-to-many relationship. This query would require both the fact table, which has the sales information by item, and the relationship table, since color is not recorded in the fact table.
The difficulty lies in the fact that color is not in the fact table. There is no way to directly relate the sales of an item in the fact table to the color of that particular item. For example, instead of calculating the sales of red items, the query aggregates sales for all items that come in red according to the relationship table. The sum includes all hats and all dresses, including blue ones and green ones. This obviously leads to numbers that are higher than the true sales for red items.
For example, using the given data, the following questions cannot all be answered accurately:

What are the total sales for hats?
The answer is $35, which can be calculated directly from the fact table.

What are the total sales for red items?
You cannot determine an accurate answer. The answer you get is $85, which is the total for all hats and dresses, since socks do not come in red. It is entirely possible that all the dresses sold are green; however, you cannot confirm this since color is not recorded in the fact table.

What are the total sales for red dresses?
Again, you cannot determine an accurate answer. If all the dresses sold are indeed green, the correct answer is $0, but the answer you will get based on the data in the fact table is $50.
The following section describes several ways to prevent multiple counting when dealing with many-to-many relationships.

Working with many-to-many relationships

As you can see, seemingly simple questions can require you to take a number of steps to answer them when many-to-many relationships are involved.
You can use one of three techniques to provide physical support to answer the types of questions that cannot be answered accurately when using many-to-many relationships. The three techniques all have differing levels of flexibility, and flexibility is always a trade-off with complexity. In all cases, the two fundamental components remain in place in one form or another:

A relationship table to define the attribute relationship


Both the attribute’s ID columns in the fact table
MicroStrategy builds the rules that MicroStrategy SQL Engine uses to generate SQL when a report request is made. If you make both of the above physical implementations, the SQL Engine uses the related table when no metric is included on the report. When a metric is included, the fact table is used to answer the query.
All of the following methods require additional data in the fact table. This means that you must capture the additional data in the source system. For example, you need to have data in the source system as to what the color is of each item sold. If this additional data was never captured in the source system, you cannot fully resolve the many-to-many relationship to calculate the amount of sales for items of a certain color.
Method 1
This method is the most straightforward way to effectively manage many-to-many relationships.
Method 1 requires you to create a separate relationship table (in this case, Rel_Color_Item) and add both attribute IDs to the fact table as shown in the following diagram.
external image MM_Method1.gif
Method 2
Method 2 eliminates the many-to-many relationship and the need for a distinct relationship table.
Here the many-to-many relationship is converted into a compound attribute relationship. You treat one attribute as a child of the other and have a compound key for the lower level attribute. Also, you add both attribute IDs, in this case Item_ID and Color_ID, to the fact table as shown in the following diagram.
external image MM_Method2.gif
While this method eliminates the need for a separate relationship table, you lose the ability to view items independent of color, or vice versa.
Method 3
Method 3 is the most versatile solution and has the following characteristics:

Further simplifies the compound attribute relationship from Method 2 into a simple attribute relationship


Provides the ability to view item and color together or independently


Requires only one attribute column in the fact table for complete flexibility, rather than two
Here you must create a new attribute, lower in level than either Color or Item. This attribute is essentially a concatenation of Color and Item, which gives it a one-to-many relationship between itself and each of its parent attributes. This is the SKU attribute, particularly common in retail data models or situations.
Finally, rather than including Color and Item in the fact table, you only need to include this new child attribute SKU, as shown in the following diagram.
external image MM_Method3.gif
This method is actually quite similar to Method 1. The major difference is that the distinct relationship table from Method 1 has an additional column, SKU, which extends the relationship of each item and color combination into a single value. Consequently, you can use this single value in the fact table.
The major disadvantage of Method 3 lies in creating the new attribute if your business model does not already use a similar structure, as well as possibly adding complexity to the ETL process.

Comments

Popular posts from this blog

Microstrategy Custom number formatting symbols

Custom number formatting symbols If none of the built-in number formats meet your needs, you can create your own custom format in the Number tab of the Format Cells dialog box. Select  Custom  as the Category and create the format using the number format symbols listed in the table below. Each custom format can have up to four optional sections, one each for: Positive numbers Negative numbers Zeros Text Each section is optional. Separate the sections by semicolons, as shown in the example below: #,###;(#,###);0;"Error: Entry must be numeric" For more examples, see  Custom number formatting examples . To jump to a section of the formatting symbol table, click one of the following: Numeric symbols Character/text symbols Date and time symbols Text color symbols Currency symbols Conditional symbols Numeric symbols For details on how numeric symbols apply to the Big Decimal data type, refer to the  Project Design Guide . ...

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Settings for Outer Join between metrics in MicroStrategy

Settings for Outer Join between metrics in MicroStrategy MicroStrategy adopts multi-pass logic to determine the execution plan for a report. This means that every metric is evaluated in separate SQL passes. Outer Joins come into play when MicroStrategy Engine merges the results from all SQL passes into one report. For a multi-pass report, different Outer Join behaviors can give the user completely different results. In addition, report metrics can be of different types which can, in some cases, influence the result of the outer join. In MicroStrategy, there are two settings that users can access to control Outer Join behavior : Formula Join Type and Metric Join Type . Metric Join Type: VLDB Setting at Database Instance Level Report and Template Levels Report Editor > Data > Report Data Options Metric Level   Metric editor > Tools > Metric Join Type Control Join between Metrics Formula Join Type: Only at Compound/Split...

Control the display of null and zero metric values

Show   Control the display of null and zero metric values in a grid report You can determine how to display or hide rows and columns in a grid report that consist only of null or zero metric values. You can have MicroStrategy hide the rows and columns in the following ways: Hide rows and columns that consist only of null metric values Hide rows and columns that consist only of zero metric values Hide rows and columns that consist only of null or zero metric values (default) Once you have defined how MicroStrategy hides null and zero metric values in the grid, you can quickly show or hide the grid using the Hide Nulls/Zeros option in the Data menu, as described below, or by clicking the  Hide Nulls/Zeros  icon  in the Data toolbar. To determine how null and zero metric values are displayed or hidden in a grid report Open the report in Edit mode. From the  Tools  menu, select  Report Options . The Report Options...

Images in Microstrategy PDF Export shows Red X

When exporting a report containing an image attribute form (using an ApplySimple statement) to PDF in MicroStrategy Web 9.4.1 and 10.x, with the Intelligence Server running on Linux, the image in the exported PDF report appears as a red "X". When exporting a report containing an image attribute form (using an ApplySimple statement) to PDF in MicroStrategy Web 9.4.1 and 10.x, with the Intelligence Server running on Linux, the image in the exported PDF report appears as a red "X" as shown below: However, the images in the report display properly when the report is executed in MicroStrategy Developer and Web. Furthermore, when the report is exported to PDF on Desktop (with the original images saved in WebASPX\Images), the images in the report display properly, as indicated below: CAUSE This is expected behavior. When the report is displayed in MicroStrategy Developer and Web, or when the report is exported to PDF from MicroStrategy Dev...

Types of filters in Microstrategy

Types of filters in Microstrategy Below are the types of filters: 1. Attribute qualification filter These types of qualifications restrict data related to attributes on the report. a) Attribute form qualification Filters data related to a business attribute’s form(s), such as ID or description. •  For example, the attribute Customer has the forms ID, First Name, Last Name, Address, and Birth Date. An attribute form qualification might filter on the form Last Name, the operator Begins With, and the letter H. The results show a list of customers whose last names start with the letter H. b) Attribute element list qualification Filters data related to a business attribute’s elements, such as New York, Washington, and San Francisco, which are elements of the attribute City. • For example, the attribute Customer has the elements John Smith, Jane Doe, William Hill, and so on. An attribute element list qualification can filter data to display only those customer...

Personalizing file locations, email and file subscriptions using macros in Microstrategy

Personalizing file locations MSTr allows to dynamically specify the  File Location  and  Backup File Location  in a file device using macros.  For example, if you specify the  File Location  as  C:\Reports\{&RecipientName}\ ,  all subscriptions using that file device are delivered to subfolders of  C:\Reports\ . Subscribed reports or documents for each recipient are delivered to a subfolder with that recipient’s name, such as  C:\Reports\Jane Smith\  or  C:\Reports\Hiro Protagonist\ . The table below lists the macros that can be used in the  File Location  and  Backup File Location  fields in a file device: Description Macro Date on which the subscription is sent {&Date} Time at which the subscription is sent {&Time} Name of the recipient {&RecipientName} User ID (32-character GUID) of the recipient {&RecipientID} Distribution Services add...

Prompt-in-prompt(Nested Prompts) in Microstrategy

Prompt-in-prompt(Nested Prompts) in  Microstrategy Nested prompts allows you to create one prompt based on the other and other bases on another, nested prompts allows us to prompt the highest level(Like year) to middle level(like Quarter, then to the low level(like Month). Here you can see how to  create a 3-level deep nested prompt that will prompt the user to select a year, then a quarter within that year, then a month within that quarter. Prompt-in-prompt is a feature in which the answer to one prompt is used to define another prompt. This feature is only implemented for element list prompts . The following procedure describes how to achieve this: Create the highest level filter. This is a filter which contains a prompt on an attribute element list. Create a filter on the attribute "Year." Click "prompt on attribute element list" and click "Next" through the rest of the screens to accept the default values. Do not set any additio...

Types of result caches in Microstrategy

Types of result caches Microstrategy The following types of  result caches are created by Intelligence Server: • Matching caches • History caches • Matching-History caches • XML caches All document caches are Matching caches; documents do not generate History caches or XML caches. Intelligent Cube reports do not create Matching caches. Matching caches Matching caches  are the  results of reports and documents that are retained for later use by the same requests later on. In general, Matching caches are the type of result caches that are used most often by Intelligence Server. When result caching is enabled, Intelligence Server determines for each request whether it can be served by an already existing Matching cache. If there is no match, it then runs the report or document on the database and creates a new Matching cache that can be reused if the same request is submitted again. This caching process is managed by the system administrator and ...