Skip to main content

Inputs for predictive metrics in Microstrategy

Inputs for predictive metrics

A predictive metric can be created using attributes and metrics as its inputs. How you define the attributes and metrics you use as inputs for your predictive metrics affects the resulting predictive metrics, as described in:
Attributes as inputs for predictive metrics
Level metrics as inputs for predictive metrics
Conditional metrics as inputs for predictive metrics

Attributes as inputs for predictive metrics

Attributes can be used as inputs for predictive metrics. Data mining often analyzes non-numeric, demographic, and psychographic information about customers, looking for attributes that are strong predictors.
For example, your MicroStrategy project contains a Customer attribute with related attributes for age, gender, and income. You can include an attribute, such as the Customer attribute, directly in a training metric, as described in Creating a predictive model using MicroStrategy.
By including an attribute directly in a training metric, a predictive metric is then created that includes the attribute as one of its inputs. When using attributes directly in training metrics to create predictive metrics, be aware of the following:
The ID attribute form for the attribute is used by the training metric to include the attribute information in a predictive metric. If attributes include additional attribute forms other than the ID form that are to be used as inputs for predictive metrics, you can create metrics based on these attribute forms. Once these metrics are created, they can then be used as inputs for predictive metrics. This scenario for creating attribute-based predictive metrics is described in Creating metrics to use additional attribute forms as inputs for predictive metrics below.
Attribute forms must use a text or numeric data type. If the attribute form uses a date data type, the data cannot be correctly represented when creating the predictive metric. If an attribute form uses date values, you must convert the date values into a numeric format to use the attribute form to create predictive metrics.

Creating metrics to use additional attribute forms as inputs for predictive metrics

If attributes include additional attribute forms other than their ID form that are to be used as inputs for predictive metrics, you can create metrics based on these attribute forms. The resulting metric can then be used as an input for a predictive metric, thus allowing the attribute information to be included in a predictive metric.
The steps below show you how to create a metric based on an attribute form. The resulting metric, which contains the attribute information, can then be used to create a predictive metric.
Prerequisite
This procedure assumes you are familiar with the process of creating a metric. For steps on how to create metrics, see Advanced Metrics.

To create metrics to use additional attribute forms as inputs for predictive metrics

1Using the Metric Editor, create a new metric expression. All metric expressions must have an aggregation function. To support including attribute information in the metric expression, in the Definition area, type Max() to use the Max aggregation function.
2Within the parentheses of the Max() aggregation function, specify the desired attribute form using the AttributeName@FormName format, where:
AttributeName: Is the name of the attribute. If there are spaces in the attribute name, you can enclose the attribute name in square brackets ([]).
FormName: Is the name of the attribute form. Be aware that this is different than the attribute form category. If there are spaces in the attribute form name, you can enclose the attribute form name in square brackets ([]).
For example, in the image shown below the Discount form of the Promotion attribute is included in the metric.
3Add the attribute as a metric level so that this metric always returns results at the level of the attribute.
4If the predictive metric is to be used to forecast values for elements that do not exist in your project, you must define the join type for the metric used as an input for the predictive metric to be an outer join. For example, the predictive metric is planned to forecast values for one year in the future. Since this future year is not represented in the project, you must define the join type for the metric used as an input for the predictive metric to be an outer join so that values are returned.
To enable outer joins to include all data:
aSelect Metric Join Type from the Tools menu. The Metric Join Type dialog box opens.
bClear the Use default inherited value check box.
cSelect Outer.
dClick OK to close the dialog box.
5If you plan to export predictive metric results to a third-party tool, you should define the column alias for the metric used as an input for the predictive metric. This ensures that the name of the metric used as an input for the predictive metric can be viewed when viewing the exported results in the third-party tool.
To create a metric column alias to ensure the column name matches the metric’s name:
aSelect Advanced Settings from the Tools menu, and then select Metric Column Options. The Metric Column Alias Options dialog box opens.
bIn the Column Name field, type the alias.
cClick OK to close the dialog box.
6Save the metric, using the alias from the previous step as the metric name. You can now include the metric in a training metric to create a predictive metric, as described in Creating a predictive model using MicroStrategy.

Level metrics as inputs for predictive metrics

The attribute used on the rows of the dataset report sets the level of the data by restricting the data to a particular level, or dimension, of the data model.
For example, if the Customer attribute is placed on the rows and the Revenue metric on the columns of a report, the data in the Revenue column is at the customer level. If the Revenue metric is used in the predictive model without any levels, then the data it produces changes based on the attribute of the report using the predictive metric. If Year is placed on the rows of the report described previously, the predictive metric calculates yearly revenue rather than customer revenue. Passing yearly revenue to a predictive model based on customer revenue yields the wrong results.
This problem can be easily resolved by creating a separate metric, which is then used as an input for the predictive metric. This separate metric can be created to match the metric definition for Revenue, but also define its level as Customer. This approach is better than adding a level directly to the Revenue metric itself because the Revenue metric may be used in other situations where the level should not be set to Customer. Such a metric would look like the following.
Prerequisite
This procedure assumes you are familiar with the process of creating a metric. For steps on how to create metrics, see Advanced Metrics.

To create level metrics to use as inputs for predictive metrics

1In the Metric Editor, open the metric that requires a level.
2Clear any Break-by parameters that may exist on the metric’s function:
aHighlight the function in the Definition pane to select it.
bRight-click the function and then select Function_Name parameters. The Parameters dialog box opens.
cOn the Break By tab, click Reset.
dClick OK to close the dialog box.
3Add the necessary attributes as metric levels:
aClick Level (Dimensionality) on the Metric component pane.
bIn the Object Browser, double-click each attribute to add as a level.
4If the predictive metric is to be used to forecast values for elements that do not exist in your project, you must define the join type for the metric used as an input for the predictive metric to be an outer join. For example, the predictive metric is planned to forecast values for one year in the future. Since this future year is not represented in the project, you must define the outer join type for the metric used as an input for the predictive metric so that values are returned.
To enable outer joins to include all data:
aSelect Metric Join Type from the Tools menu. The Metric Join Type dialog box opens.
bClear the Use default inherited value check box.
cSelect Outer.
dClick OK to close the dialog box.
5If you plan to export predictive metric results to a third-party tool, you should define the column alias for the metric used as an input for the predictive metric. This ensures that the name of the metric used as an input for the predictive metric can be viewed when viewing the exported results in the third-party tool.
To create a metric column alias to ensure the column name matches the metric’s name:
aSelect Advanced Settings from the Tools menu, and then select Metric Column Options. The Metric Column Alias Options dialog box opens.
bIn the Column Name field, type the alias.
cClick OK to close the dialog box.
6Save the metric with the alias name from the previous step. You can now include the metric in a training metric to create a predictive metric, as described in Creating a predictive model using MicroStrategy.

Conditional metrics as inputs for predictive metrics

To group a metric’s results by an attribute, create a conditional metric for each category. For example, you want to use customer revenue grouped by payment method in your data mining analysis. If you place the Customer attribute on the rows of the report, the Revenue metric on the columns, and the Payment Method attribute on the columns, you get the following report as a result:
However, this report presents problems if it is used as a dataset report because multiple headings are generated for all the columns, specifically, Revenue and each Payment Method. Additionally, each column is revenue for a particular payment method and unless there is a metric that matches this definition, it is difficult to successfully deploy any model that uses one of these columns.
To solve this problem, create a separate metric, which is then used as an input for a predictive metric, that filters Revenue for each Payment Method. This has the same definition as the original Revenue metric, but its conditionality is set to filter Revenue by a particular Payment Type.
Prerequisite
This procedure assumes you are familiar with the process of creating metrics and filters. For steps on how to create metrics, see Advanced Metrics. For steps on how to create filters, see Advanced Filters: Filtering Data on Reports.

To create a conditional predictive metric

1Create a separate filter for each of the necessary attribute elements. For the example above, they are Payment Method = Visa, Payment Method = Amex, Payment Method = Check, and so on.
2For each metric, create a separate metric to be used as an input for a predictive metric, as explained in the section above.
3Add the filters you created as conditions of the metric-based predictive input metric. Save the metric. You can now include the metric in a training metric to create a predictive metric, as described in Creating a predictive model using MicroStrategy.
The following report uses conditional metrics to generate the same results as the first report but in a dataset report format.

Comments

Post a Comment

Popular posts from this blog

Custom Tooltips in Microstrategy developer and Web

Custom Tooltips in Microstrategy developer and Web The following table describes the macros you can use to customize graph tooltips in both MicroStrategy Developer and MicroStrategy Web: Macro Information Displayed {&TOOLTIP} All relevant labels and values associated with a graph item. {&GROUPLABEL} Name of the graph item's category. This value is often the graph item's attribute element information, as attributes are commonly used as the categories of graph reports. {&SERIESLABEL} Name of the graph item’s series. This value is often the graph item's metric name information, as metrics are commonly used as the series of graph reports. {&VALUE} The value of a given data point. {&XVALUE} The X-value of a data point. Only applicable to Bubble charts and Scatter plots. {&YVALUE} The Y-value of a data point. Only applicable to Bubble charts and Scatter plots. {&ZVALUE} The Z-value of a data point. Only applicable to Bubble charts and Scatter plots. {...

Microstrategy Caches explained

Microstrategy Caches Improving Response Time: Caching A  cache is a result set that is stored on a system to improve response time in future requests.  With caching, users can retrieve results from Intelligence Server rather than re-executing queries against a database. To delete all object caches for a project 1 In Developer, log into a project. You must log in with a user account that has administrative privileges. 2 From the  Administration  menu, point to  Projects , and then select  Project Configuration . The Project Configuration Editor opens. 3 Expand  Caching , expand  Auxiliary Caches , then select  Objects . To delete all configuration object caches for a server 1 Log in to the project source. 2 From the  Administration  menu in Developer, point to  Server , and then select  Purge Server Object Caches . 4 Click  Purge Now . To purge web cache follow the steps in the link ...

Logical Views to specify an outer join between two attribute lookup tables when only attributes are on a report

Logical Views to specify an outer join between two attribute lookup tables when only attributes are on a report Apart from using the VLDB properties to create the left outer join,  article describes how to use the Logical View to specify an outer join between two attribute lookup tables when only attributes are on a report. This method exists as attribute only outer joins will not be generated on their own by the MicroStrategy SQL engine. This is because they are only necessary with r agged/unbalanced hierarchies which are not supported as null attribute IDs are not supported (parent elements with no child elements or child elements with no parents).  Brief instructions are provided using the example below. Consider, two attributes: Parent01 and Child01 have a parent-child relationship. Their Lookup tables are defined, as follows Parent01 Child01 Note that although there are 4 ID values for the attribute Parent01, there is no defined relationship ...

Settings for Outer Join between metrics in MicroStrategy

Settings for Outer Join between metrics in MicroStrategy MicroStrategy adopts multi-pass logic to determine the execution plan for a report. This means that every metric is evaluated in separate SQL passes. Outer Joins come into play when MicroStrategy Engine merges the results from all SQL passes into one report. For a multi-pass report, different Outer Join behaviors can give the user completely different results. In addition, report metrics can be of different types which can, in some cases, influence the result of the outer join. In MicroStrategy, there are two settings that users can access to control Outer Join behavior : Formula Join Type and Metric Join Type . Metric Join Type: VLDB Setting at Database Instance Level Report and Template Levels Report Editor > Data > Report Data Options Metric Level   Metric editor > Tools > Metric Join Type Control Join between Metrics Formula Join Type: Only at Compound/Split...

Apply or Pass-through functions in Microstrategy

Ap ply (Pass-Through) functions MSTR Apply functions provide access to functions or syntactic constructs that are not standard in MicroStrategy but are provided by various RDBMS systems.. Syntax common to Apply functions Apply Function Name   ("expression with placeholders", Arg1, Arg2, Arg3, …ArgN) where: Apply Function Name  – is a generic name used for the predefined pass-through functions described above expression with placeholders  – is the string describing the actual expression or syntax that the engine uses while generating the SQL and which is sent to the RDBMS. The placeholders are represented by #0, #1, and so on. "#" is a reserved character for MicroStrategy. Arg  – is an argument that replaces the parameter markers in the pattern. Arg1 replaces #0, Arg2 replaces #1, and so on. There are   five  pre-defined Apply functions to replace regular, predefined functions of the same type. For more details, cli...

Predictive modelling in Data Science using Microstrategy

Creating a predictive modelling in MicroStrategy MicroStrategy Data Mining Services has been evolving to include more data mining algorithms and functionality. One key feature is MicroStrategy Developer’s Training Metric Wizard. The Training Metric Wizard can be used to create several different types of predictive models including linear and exponential regression, logistic regression, decision tree, cluster, time series, and association rules. Linear and exponential regression The linear regression data mining technique should be familiar to you if you have ever tried to extrapolate or interpolate data, tried to find the line that best fits a series of data points, or used Microsoft Excel’s LINEST or LOGEST functions. Regression analyzes the relationship between several predictive inputs, or independent variables, and a dependent variable that is to be predicted. Regression finds the line that best fits the data, with a minimum of error. For example, you have a dataset ...

Partition Key Selection guidelines in MicroStrategy

Partition Key Selection guidelines MicroStrategy The partition attribute is typically dictated by specific application needs. Below are some general guidelines for identifying a good partition attribute. Some of the largest fact tables in the application are typically good candidates for partitioning and thus influence the choice of the partition attribute.  Data should be partitioned in such a way that it allows for the most number of partitions to be involved in any question that is asked of the application. Attributes that are frequently used for filtering or selections do not make for good partition attributes. The partition attribute should allow for near uniform distribution of data across the partitions, so that the workload on each partition is evenly distributed. To support best dashboard execution and concurrency performance, MicroStrategy has chosen to limit the number of logical CPUs engaged for any single grid evaluation to  4 . Columns on which some of the larger...

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Components of the MicroStrategy Engine

Components of the MicroStrategy Engine The MicroStrategy Engine consists of three engines:  • SQL Engine  • Query Engine  • Analytical Engine  These individual engines work together to fulfill report requests submitted by MicroStrategy that can be resolved by pure SQL alone.  The SQL Engine is responsible for generating optimized SQL and producing result sets that can be resolved by pure SQL alone. The Query Engine is responsible for executing the SQL generated by the SQL Engine.  The Analytical Engine is responsible for performing any calculation that cannot be resolved with SQL alone.

Custom Subtotal Displays in MicroStrategy

Defining custom subtotal displays in MicroStrategy By default, when users apply subtotals in a report, the name of the subtotal is displayed in the subtotal line items that appear in the report. Users can use custom subtotals to give more control over the characteristics of a subtotal. Custom subtotals allow users to define custom subtotal line items that appear on the reports  U sers can make the subtotal name dynamic by typing special characters in the subtotal name field as listed in the following table. Character Description #A The name of the attribute under which the subtotal appears. #P The name of the attribute to the left of, or above the attribute under which the subtotal appears. #0 All the forms of the parent element. #1 The first form of the parent element reading from left to right or from top to bottom. #2 The second form of the parent element reading from left to right or from top to bottom. #3 The third form of th...