Skip to main content

Inputs for predictive metrics in Microstrategy

Inputs for predictive metrics

A predictive metric can be created using attributes and metrics as its inputs. How you define the attributes and metrics you use as inputs for your predictive metrics affects the resulting predictive metrics, as described in:
Attributes as inputs for predictive metrics
Level metrics as inputs for predictive metrics
Conditional metrics as inputs for predictive metrics

Attributes as inputs for predictive metrics

Attributes can be used as inputs for predictive metrics. Data mining often analyzes non-numeric, demographic, and psychographic information about customers, looking for attributes that are strong predictors.
For example, your MicroStrategy project contains a Customer attribute with related attributes for age, gender, and income. You can include an attribute, such as the Customer attribute, directly in a training metric, as described in Creating a predictive model using MicroStrategy.
By including an attribute directly in a training metric, a predictive metric is then created that includes the attribute as one of its inputs. When using attributes directly in training metrics to create predictive metrics, be aware of the following:
The ID attribute form for the attribute is used by the training metric to include the attribute information in a predictive metric. If attributes include additional attribute forms other than the ID form that are to be used as inputs for predictive metrics, you can create metrics based on these attribute forms. Once these metrics are created, they can then be used as inputs for predictive metrics. This scenario for creating attribute-based predictive metrics is described in Creating metrics to use additional attribute forms as inputs for predictive metrics below.
Attribute forms must use a text or numeric data type. If the attribute form uses a date data type, the data cannot be correctly represented when creating the predictive metric. If an attribute form uses date values, you must convert the date values into a numeric format to use the attribute form to create predictive metrics.

Creating metrics to use additional attribute forms as inputs for predictive metrics

If attributes include additional attribute forms other than their ID form that are to be used as inputs for predictive metrics, you can create metrics based on these attribute forms. The resulting metric can then be used as an input for a predictive metric, thus allowing the attribute information to be included in a predictive metric.
The steps below show you how to create a metric based on an attribute form. The resulting metric, which contains the attribute information, can then be used to create a predictive metric.
Prerequisite
This procedure assumes you are familiar with the process of creating a metric. For steps on how to create metrics, see Advanced Metrics.

To create metrics to use additional attribute forms as inputs for predictive metrics

1Using the Metric Editor, create a new metric expression. All metric expressions must have an aggregation function. To support including attribute information in the metric expression, in the Definition area, type Max() to use the Max aggregation function.
2Within the parentheses of the Max() aggregation function, specify the desired attribute form using the AttributeName@FormName format, where:
AttributeName: Is the name of the attribute. If there are spaces in the attribute name, you can enclose the attribute name in square brackets ([]).
FormName: Is the name of the attribute form. Be aware that this is different than the attribute form category. If there are spaces in the attribute form name, you can enclose the attribute form name in square brackets ([]).
For example, in the image shown below the Discount form of the Promotion attribute is included in the metric.
3Add the attribute as a metric level so that this metric always returns results at the level of the attribute.
4If the predictive metric is to be used to forecast values for elements that do not exist in your project, you must define the join type for the metric used as an input for the predictive metric to be an outer join. For example, the predictive metric is planned to forecast values for one year in the future. Since this future year is not represented in the project, you must define the join type for the metric used as an input for the predictive metric to be an outer join so that values are returned.
To enable outer joins to include all data:
aSelect Metric Join Type from the Tools menu. The Metric Join Type dialog box opens.
bClear the Use default inherited value check box.
cSelect Outer.
dClick OK to close the dialog box.
5If you plan to export predictive metric results to a third-party tool, you should define the column alias for the metric used as an input for the predictive metric. This ensures that the name of the metric used as an input for the predictive metric can be viewed when viewing the exported results in the third-party tool.
To create a metric column alias to ensure the column name matches the metric’s name:
aSelect Advanced Settings from the Tools menu, and then select Metric Column Options. The Metric Column Alias Options dialog box opens.
bIn the Column Name field, type the alias.
cClick OK to close the dialog box.
6Save the metric, using the alias from the previous step as the metric name. You can now include the metric in a training metric to create a predictive metric, as described in Creating a predictive model using MicroStrategy.

Level metrics as inputs for predictive metrics

The attribute used on the rows of the dataset report sets the level of the data by restricting the data to a particular level, or dimension, of the data model.
For example, if the Customer attribute is placed on the rows and the Revenue metric on the columns of a report, the data in the Revenue column is at the customer level. If the Revenue metric is used in the predictive model without any levels, then the data it produces changes based on the attribute of the report using the predictive metric. If Year is placed on the rows of the report described previously, the predictive metric calculates yearly revenue rather than customer revenue. Passing yearly revenue to a predictive model based on customer revenue yields the wrong results.
This problem can be easily resolved by creating a separate metric, which is then used as an input for the predictive metric. This separate metric can be created to match the metric definition for Revenue, but also define its level as Customer. This approach is better than adding a level directly to the Revenue metric itself because the Revenue metric may be used in other situations where the level should not be set to Customer. Such a metric would look like the following.
Prerequisite
This procedure assumes you are familiar with the process of creating a metric. For steps on how to create metrics, see Advanced Metrics.

To create level metrics to use as inputs for predictive metrics

1In the Metric Editor, open the metric that requires a level.
2Clear any Break-by parameters that may exist on the metric’s function:
aHighlight the function in the Definition pane to select it.
bRight-click the function and then select Function_Name parameters. The Parameters dialog box opens.
cOn the Break By tab, click Reset.
dClick OK to close the dialog box.
3Add the necessary attributes as metric levels:
aClick Level (Dimensionality) on the Metric component pane.
bIn the Object Browser, double-click each attribute to add as a level.
4If the predictive metric is to be used to forecast values for elements that do not exist in your project, you must define the join type for the metric used as an input for the predictive metric to be an outer join. For example, the predictive metric is planned to forecast values for one year in the future. Since this future year is not represented in the project, you must define the outer join type for the metric used as an input for the predictive metric so that values are returned.
To enable outer joins to include all data:
aSelect Metric Join Type from the Tools menu. The Metric Join Type dialog box opens.
bClear the Use default inherited value check box.
cSelect Outer.
dClick OK to close the dialog box.
5If you plan to export predictive metric results to a third-party tool, you should define the column alias for the metric used as an input for the predictive metric. This ensures that the name of the metric used as an input for the predictive metric can be viewed when viewing the exported results in the third-party tool.
To create a metric column alias to ensure the column name matches the metric’s name:
aSelect Advanced Settings from the Tools menu, and then select Metric Column Options. The Metric Column Alias Options dialog box opens.
bIn the Column Name field, type the alias.
cClick OK to close the dialog box.
6Save the metric with the alias name from the previous step. You can now include the metric in a training metric to create a predictive metric, as described in Creating a predictive model using MicroStrategy.

Conditional metrics as inputs for predictive metrics

To group a metric’s results by an attribute, create a conditional metric for each category. For example, you want to use customer revenue grouped by payment method in your data mining analysis. If you place the Customer attribute on the rows of the report, the Revenue metric on the columns, and the Payment Method attribute on the columns, you get the following report as a result:
However, this report presents problems if it is used as a dataset report because multiple headings are generated for all the columns, specifically, Revenue and each Payment Method. Additionally, each column is revenue for a particular payment method and unless there is a metric that matches this definition, it is difficult to successfully deploy any model that uses one of these columns.
To solve this problem, create a separate metric, which is then used as an input for a predictive metric, that filters Revenue for each Payment Method. This has the same definition as the original Revenue metric, but its conditionality is set to filter Revenue by a particular Payment Type.
Prerequisite
This procedure assumes you are familiar with the process of creating metrics and filters. For steps on how to create metrics, see Advanced Metrics. For steps on how to create filters, see Advanced Filters: Filtering Data on Reports.

To create a conditional predictive metric

1Create a separate filter for each of the necessary attribute elements. For the example above, they are Payment Method = Visa, Payment Method = Amex, Payment Method = Check, and so on.
2For each metric, create a separate metric to be used as an input for a predictive metric, as explained in the section above.
3Add the filters you created as conditions of the metric-based predictive input metric. Save the metric. You can now include the metric in a training metric to create a predictive metric, as described in Creating a predictive model using MicroStrategy.
The following report uses conditional metrics to generate the same results as the first report but in a dataset report format.

Comments

Post a Comment

Popular posts from this blog

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Microstrategy Custom number formatting symbols

Custom number formatting symbols If none of the built-in number formats meet your needs, you can create your own custom format in the Number tab of the Format Cells dialog box. Select  Custom  as the Category and create the format using the number format symbols listed in the table below. Each custom format can have up to four optional sections, one each for: Positive numbers Negative numbers Zeros Text Each section is optional. Separate the sections by semicolons, as shown in the example below: #,###;(#,###);0;"Error: Entry must be numeric" For more examples, see  Custom number formatting examples . To jump to a section of the formatting symbol table, click one of the following: Numeric symbols Character/text symbols Date and time symbols Text color symbols Currency symbols Conditional symbols Numeric symbols For details on how numeric symbols apply to the Big Decimal data type, refer to the  Project Design Guide . ...

Custom Tooltips in Microstrategy developer and Web

Custom Tooltips in Microstrategy developer and Web The following table describes the macros you can use to customize graph tooltips in both MicroStrategy Developer and MicroStrategy Web: Macro Information Displayed {&TOOLTIP} All relevant labels and values associated with a graph item. {&GROUPLABEL} Name of the graph item's category. This value is often the graph item's attribute element information, as attributes are commonly used as the categories of graph reports. {&SERIESLABEL} Name of the graph item’s series. This value is often the graph item's metric name information, as metrics are commonly used as the series of graph reports. {&VALUE} The value of a given data point. {&XVALUE} The X-value of a data point. Only applicable to Bubble charts and Scatter plots. {&YVALUE} The Y-value of a data point. Only applicable to Bubble charts and Scatter plots. {&ZVALUE} The Z-value of a data point. Only applicable to Bubble charts and Scatter plots. {...

Transaction Services - Configure Transactions

Configure Transactions in MSTR Web Transaction Services-enabled document displayed on an iPhone, iPad, or Android device can allow users to insert/update/delete data in to the database, using the options in the Configure Transactions Editor. To do so, you must link a Transaction Services report to a grid or to text fields in a panel stack. If the document is being displayed on an iOS device, you can link the report to the cells of a transaction table. Data from the input objects defined in the Transaction Services report is displayed in the grid, text fields, or cells for users to edit. Prerequisites:        Ø   You must have the Web Configure Transaction privilege assigned by MSTR user admin. Ø   Create the Transaction Services report (usually a grid report) you want to link to the grid, text fields, or transaction table cells. Make sure that the Transaction Services report must contain the input object for each value you w...

mstrio – Python and R wrappers for the MicroStrategy

mstrio – Python and R wrappers for the MicroStrategy REST APIs Connecting to MicroStrategy  Create a connection to the Intelligence Server using   Connection()   and    connect()  in Python and R, respectively. Required arguments for the   Connection()  function are the URL for the MicroStrategy REST API server, MicroStrategy Intelligence Server username and password, as well as the MicroStrategy project name. By default, the   connect()  function anticipates your MicroStrategy Intelligence Server username and password. LDAP authentication is also supported. Use the optional argument    login_mode=16    in the    connect()  function for LDAP authentication.  Extract data from cubes and reports  To extract data from MicroStrategy cubes and reports, use the   get_cube()  and   get_report()  functions. Use...

Types of filters in Microstrategy

Types of filters in Microstrategy Below are the types of filters: 1. Attribute qualification filter These types of qualifications restrict data related to attributes on the report. a) Attribute form qualification Filters data related to a business attribute’s form(s), such as ID or description. •  For example, the attribute Customer has the forms ID, First Name, Last Name, Address, and Birth Date. An attribute form qualification might filter on the form Last Name, the operator Begins With, and the letter H. The results show a list of customers whose last names start with the letter H. b) Attribute element list qualification Filters data related to a business attribute’s elements, such as New York, Washington, and San Francisco, which are elements of the attribute City. • For example, the attribute Customer has the elements John Smith, Jane Doe, William Hill, and so on. An attribute element list qualification can filter data to display only those customer...

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

Microstrategy Report Services documents and dashboards

Microstrategy Report Services documents vs Dashboards A MicroStrategy Report Services document displays data coming from multiple reports, with the data laid out and designed in presentation-quality format. Most data on a document is from one or more underlying datasets. A dataset is a standard MicroStrategy report. Other document components that do not originate from the dataset, such as static text used for a title or heading, page numbers, and images, are added by the document's designer and are stored in the document's definition. A Report Services (RS) dashboard is a special type of document. An RS dashboard is commonly only one page long, is intended to be viewed online, and usually provides interactive features that let analysts change how they view the dashboard’s data, as well as what data they are viewing. A broad selection of widgets and a wide variety of formatting options allow you to design a customized, interactive dashboard. Both documents and RS dashb...

Data Mart Reports in Microstrategy

Creating Data Mart Reports in Microstrategy   When there is requirement to store all the report results to a database table you can use the interesting feature in Microstratgey called Data Mart Reports. To create a data mart table, you first create a data mart report that defines the columns of the data mart table. You then create the data mart table and populate it with data. The steps below walk you through the process of creating a data mart report and then executing the report to create a data mart table. The steps also include an example for most steps, based on Tutorial sample data in the MicroStrategy Tutorial project.                Follow the simple steps below to create a datamart report: 1 In MicroStrategy Developer, create a new report or select an existing report to use as the data mart table. The report should contain the attributes...

Bursting file subscriptions Microstartegy

Bursting file subscriptions: Delivering  parts of reports across multiple files: Large MicroStrategy reports and documents are often broken up into separate pages by attributes. In a similar way, with Distribution Services, you can split up, or burst, a report or document into multiple files. When the subscription is executed, a separate file is created for each element of each attribute selected for bursting. Each file has a portion of data according to the attributes used to group data in the report (page-by axis) or document (group-by axis). Ex:, you may have a report with information for all regions. You could place Region in the page-by axis and burst the file subscription into the separate regions. This creates one report file for each region. As a second ex:, if you choose to burst your report using the Region and Category attributes, a separate file is created for each combination of Region and Category, such as Central and Books as a report, Central and Ele...