Skip to main content

many-to-many and joint child relationships

Supporting many-to-many and joint child relationships in MSTR


Two forms of attribute relationships, many-to-many relationships and joint child relationships, can introduce additional complexity to the schema and warehouse design process. The following sections discuss the considerations you must make to ensure an effective warehouse design in light of the unique nature of these relationships.
While the topics are largely related to logical model design, a working knowledge of physical schemas is helpful when dealing with the challenges involved with these topics.
Before reading this section, you should know what logical data models and physical warehouse schemas are, and how to read and interpret them. Logical data models and physical warehouse schemas are discussed in The Logical Data Modeland Warehouse Structure for Your Logical Data Model respectively. These chapters discuss how to plan and create a conceptual framework for your business intelligence data.

Many-to-many relationships

The presence of many-to-many relationships introduces complexity during the warehouse design process. With the presence of many-to-many relationships, you must make additional considerations to effectively plan your design.
Below are some real-life examples of many-to-many relationships which must be carefully handled in the data model and schema:

In a certain organization, each salesperson can work in more than one calling center. Likewise, each calling center has many salespeople.


In a car manufacturing plant, many models of cars are produced, and each comes in several colors. That is, there are many colors for a single type of car, and many types of cars can be associated with the same color.
The following sections use the example of items and colors to demonstrate a many-to-many relationship and the options you have for dealing with them. One item can come in many colors, such as red hats, blue hats, and green hats, and one color can be associated with many items, such as red dress, red hat, red shoes, and red socks.
Potential problems with many-to-many relationships usually come in the following forms, both of which can be avoided by correctly modeling the relationship:

Loss of analytical capability


Multiple counting

Loss of analytical capability

With the color and item many-to-many relationship, there are usually two business questions for which users want answers:

1In what colors are certain items available?


2How much of a particular item/color combination was sold?
Answering the first question requires a table that contains a list of all possible item/color combinations. Recall that one-to-many relationships are usually in the child’s lookup table.
In many-to-many relationships this is not feasible. Rather, a distinct relationship table needs to be present in your warehouse. The following diagram shows the lookup and relationship tables for item and color:
external image color_item_relate_table.gif
The Rel_Color_Item table provides a row for every possible item/color combination.
Answering the second question requires a fact table that has sales information as well as color and item information. The following diagram shows the same scenario as before, but in addition it shows a simple fact table containing sales data keyed by item, color, and date.
external image color_item_relate_fact.gif
The fact table in the above diagram alone is not sufficient to answer the first question. Only item and color combinations that were actually sold, and therefore have sales recorded, can be retrieved from this table. If you have item and color combinations that are available but that have never been sold, this fact table cannot provide a complete list of item and color combinations to answer question one.
In summary, to prevent any loss of analytical flexibility when dealing with a many-to-many attribute relationship, the following requirements must be met:

A distinct relationship table to identify all the possible combinations of attribute elements between attributes


Both the attribute ID columns in the fact table
You can implement the above points in several different ways, which are discussed in Working with many-to-many relationships.

Multiple counting

When dealing with many-to-many relationships, loss of analytical capability is only one challenge. Another equally significant issue is multiple counting. Multiple counting occurs when all of the following takes place:

You attempt to aggregate data to the level of one of the attributes in the many-to-many relationship, or a higher level than one of the attributes in the many-to-many relationship.


The relationship exists in a distinct relationship table.


All of the attributes in the many-to-many relationship are not in the fact table.
Recall the example from above, but make the following change: remove color from the fact table.
external image multiple_counting.gif
Assume that there are three items, including hats, dresses, and socks. These items come in three colors, including red, blue, and green, with the exception of socks, which come in only green and blue. The following diagram shows this data in the lookup tables as well as some simple sales data:
external image multiple_counting2.gif
The risk of multiple counting occurs when you run a query requesting the sales by color, effectively aggregating to the item attribute level in the many-to-many relationship. This query would require both the fact table, which has the sales information by item, and the relationship table, since color is not recorded in the fact table.
The difficulty lies in the fact that color is not in the fact table. There is no way to directly relate the sales of an item in the fact table to the color of that particular item. For example, instead of calculating the sales of red items, the query aggregates sales for all items that come in red according to the relationship table. The sum includes all hats and all dresses, including blue ones and green ones. This obviously leads to numbers that are higher than the true sales for red items.
For example, using the given data, the following questions cannot all be answered accurately:

What are the total sales for hats?
The answer is $35, which can be calculated directly from the fact table.

What are the total sales for red items?
You cannot determine an accurate answer. The answer you get is $85, which is the total for all hats and dresses, since socks do not come in red. It is entirely possible that all the dresses sold are green; however, you cannot confirm this since color is not recorded in the fact table.

What are the total sales for red dresses?
Again, you cannot determine an accurate answer. If all the dresses sold are indeed green, the correct answer is $0, but the answer you will get based on the data in the fact table is $50.
The following section describes several ways to prevent multiple counting when dealing with many-to-many relationships.

Working with many-to-many relationships

As you can see, seemingly simple questions can require you to take a number of steps to answer them when many-to-many relationships are involved.
You can use one of three techniques to provide physical support to answer the types of questions that cannot be answered accurately when using many-to-many relationships. The three techniques all have differing levels of flexibility, and flexibility is always a trade-off with complexity. In all cases, the two fundamental components remain in place in one form or another:

A relationship table to define the attribute relationship


Both the attribute’s ID columns in the fact table
MicroStrategy builds the rules that MicroStrategy SQL Engine uses to generate SQL when a report request is made. If you make both of the above physical implementations, the SQL Engine uses the related table when no metric is included on the report. When a metric is included, the fact table is used to answer the query.
All of the following methods require additional data in the fact table. This means that you must capture the additional data in the source system. For example, you need to have data in the source system as to what the color is of each item sold. If this additional data was never captured in the source system, you cannot fully resolve the many-to-many relationship to calculate the amount of sales for items of a certain color.
Method 1
This method is the most straightforward way to effectively manage many-to-many relationships.
Method 1 requires you to create a separate relationship table (in this case, Rel_Color_Item) and add both attribute IDs to the fact table as shown in the following diagram.
external image MM_Method1.gif
Method 2
Method 2 eliminates the many-to-many relationship and the need for a distinct relationship table.
Here the many-to-many relationship is converted into a compound attribute relationship. You treat one attribute as a child of the other and have a compound key for the lower level attribute. Also, you add both attribute IDs, in this case Item_ID and Color_ID, to the fact table as shown in the following diagram.
external image MM_Method2.gif
While this method eliminates the need for a separate relationship table, you lose the ability to view items independent of color, or vice versa.
Method 3
Method 3 is the most versatile solution and has the following characteristics:

Further simplifies the compound attribute relationship from Method 2 into a simple attribute relationship


Provides the ability to view item and color together or independently


Requires only one attribute column in the fact table for complete flexibility, rather than two
Here you must create a new attribute, lower in level than either Color or Item. This attribute is essentially a concatenation of Color and Item, which gives it a one-to-many relationship between itself and each of its parent attributes. This is the SKU attribute, particularly common in retail data models or situations.
Finally, rather than including Color and Item in the fact table, you only need to include this new child attribute SKU, as shown in the following diagram.
external image MM_Method3.gif
This method is actually quite similar to Method 1. The major difference is that the distinct relationship table from Method 1 has an additional column, SKU, which extends the relationship of each item and color combination into a single value. Consequently, you can use this single value in the fact table.
The major disadvantage of Method 3 lies in creating the new attribute if your business model does not already use a similar structure, as well as possibly adding complexity to the ETL process.

Excerpt from https://www2.microstrategy.com/producthelp/10.7/ProjectDesignGuide/WebHelp/Lang_1033/Content/ProjectDesign/Supporting_many_to_many_and_joint_child_relationsh.htm#pd-attributes_overview_3631995489_1086149

Comments

Post a Comment

Popular posts from this blog

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perform transf
Microstrategy Release Types Platform release Interval:  Annually every twelve (12) months in December Who:  Entire customer base What:  Focus on production level security, stability, and performance defect fixes for all customers. Expectation:  Customer has chosen platform path and wants product stability without new enhancements. Support:  Three (3) years, patches for approved P1 defects, and regular hotfix cadence addresses critical defects. Feature Release Interval:  Quarterly every three (3) months Who:  Customers with specific feature requirements. What:  New functionality developed in close collaboration with customers and customer council. Expectation:  Customer has chosen feature path, will consume further feature releases. Support:  Six (6) months patch support for approved P1 defects and (eighteen) 18 months troubleshooting. Customers upgrade to next feature release for roll-up fixes. Why has MicroStrategy introduced “Platform” and “Feature

Sending an email in MSTR where the results of a report are in the email body as HTML content and a different report/document is an attachment to the same email in MicroStrategy

Is it possible to send an email using Distribution Services where the results of a report are in the email body as HTML content and a different report/document in MSTR? ANSWER: It is currently not possible to send an email using Distribution Services where the results of a report are in the email body as HTML content and a different report/document is an attachment to the same email in MicroStrategy 9.x. An enhancement request has been logged for this feature. ACTION: Contact Microstrategy Technical Support for an update on the enhancement, I have contacted but nobody knows where the request is  

Transaction Services - Configure Transactions

Configure Transactions in MSTR Web Transaction Services-enabled document displayed on an iPhone, iPad, or Android device can allow users to insert/update/delete data in to the database, using the options in the Configure Transactions Editor. To do so, you must link a Transaction Services report to a grid or to text fields in a panel stack. If the document is being displayed on an iOS device, you can link the report to the cells of a transaction table. Data from the input objects defined in the Transaction Services report is displayed in the grid, text fields, or cells for users to edit. Prerequisites:        Ø   You must have the Web Configure Transaction privilege assigned by MSTR user admin. Ø   Create the Transaction Services report (usually a grid report) you want to link to the grid, text fields, or transaction table cells. Make sure that the Transaction Services report must contain the input object for each value you want to allow users to change.  Ø   Ma

Control the display of null and zero metric values

Show   Control the display of null and zero metric values in a grid report You can determine how to display or hide rows and columns in a grid report that consist only of null or zero metric values. You can have MicroStrategy hide the rows and columns in the following ways: Hide rows and columns that consist only of null metric values Hide rows and columns that consist only of zero metric values Hide rows and columns that consist only of null or zero metric values (default) Once you have defined how MicroStrategy hides null and zero metric values in the grid, you can quickly show or hide the grid using the Hide Nulls/Zeros option in the Data menu, as described below, or by clicking the  Hide Nulls/Zeros  icon  in the Data toolbar. To determine how null and zero metric values are displayed or hidden in a grid report Open the report in Edit mode. From the  Tools  menu, select  Report Options . The Report Options dialog box opens. To determine how

Update the data on an Intelligent Cube without having to republish the entire cube in MicroStrategy

Update the data on an Intelligent Cube without having to republish the entire cube in MicroStrategy MicroStrategy has introduced a feature known as, Incremental Refresh Options, which allow Intelligent Cubes to be updated based on one or more attributes, by setting up incremental refresh settings to update the Intelligent Cube with only new data. This can reduce the time and system resources necessary to update the Intelligent Cube periodically versus a full republish. For example, if a user has an Intelligent Cube that contains weekly sales data, the user may want this Intelligent Cube to be updated at the end of every week with the sales data for that week. By setting up incremental refresh settings, he can make it so that only data for one week is added to the Intelligent Cube, without affecting the existing data and without having to reload all existing data. Users can select two types of objects for the incremental fetch: a report or

Multi-Table Data Import(MTDI) from one or more supported data sources

Multi-Table Data Import(MTDI) from one or more supported data sources In MicroStrategy Analytics Enterprise Web 10 onewards, users can now simultaneously import two or more tables from one or more supported data sources, this feature is called Multi-Table Data Import (MTDI) which has been renamed as Super Cubes in MSTR 2019 (Does it sound like multisourcing for all the users without admin help?) Currently, all connectors in MicroStrategy Web 10 except " OLAP " and " Search Engine Indices " support Multi-Table Data Import. Users are able to add multiple tables/files when doing data import from single connector, as shown below: Users are also able to combine multiple tables/files from different sources and store them into one single Intelligent Cube, as shown below:

Stop a Report Services Document subscription from sending if no data is returned in MicroStrategy Web

Trick to Stop a Report Services Document subscription from sending if no data is returned in MicroStrategy Web The following steps are for stopping a Report Services Document subscription from sending if no data is returned: In MicroStrategy Web, edit or execute a report. Right-click on the metric header to apply the condition or threshold and select " Alerts ". Specify the condition " Is Not Null " to the metric for the delivery to be triggered in the filter editor as shown below. Expand the "Delivery Settings" section. Specify the desired delivery options including recipient address, subscription name, delivery format, compression options and the schedule to run the report and check the condition.  The subscription will be sent on the defined schedule only when data is returned in the Report Services Document.

Personalizing file locations, email and file subscriptions using macros in Microstrategy

Personalizing file locations MSTr allows to dynamically specify the  File Location  and  Backup File Location  in a file device using macros.  For example, if you specify the  File Location  as  C:\Reports\{&RecipientName}\ ,  all subscriptions using that file device are delivered to subfolders of  C:\Reports\ . Subscribed reports or documents for each recipient are delivered to a subfolder with that recipient’s name, such as  C:\Reports\Jane Smith\  or  C:\Reports\Hiro Protagonist\ . The table below lists the macros that can be used in the  File Location  and  Backup File Location  fields in a file device: Description Macro Date on which the subscription is sent {&Date} Time at which the subscription is sent {&Time} Name of the recipient {&RecipientName} User ID (32-character GUID) of the recipient {&RecipientID} Distribution Services address that the subscription is delivered to {&AddressName} File path that a

MicroStrategy default sort order for an attribute elements browsing

MicroStrategy default sort order for an attribute elements browsing and display How does MicroStrategy 9.x resolve the default sort order for an attribute when different sort orders are defined for different forms? Consider the following cases: CASE 1 A new attribute is created with three forms, all with sort order set to none. Form Name Form Type Default Sort Order ID ID None DESC DESC None LongDesc None None The overall sort order is evaluated and stored in the attribute definition when the attribute is saved. With all form sort orders set to none there is no saved sort order, MicroStrategy defaults to sort ascending by ID. CASE 2 The same attribute is modified so the forms are now: Form Name Form Type Default Sort Order ID ID None DESC DESC Descending LongDesc None Ascending Now when the attribute is saved, MicroStrategy goes through each form in the order they appear in the main 'Forms' window of the attribute editor. The first