Skip to main content

Using linear and seasonal regression for Revenue Forecasting

Revenue forecasting example (using linear and seasonal regression)

To aid in setting goals for next year, you would like to establish a forecast of your company's revenue based on existing trends.
You will use the revenue values already available in your MicroStrategy project. Predictions of future revenue will be determined at quarterly intervals. The quarters for the future dates are already defined in your MicroStrategy project, but revenue figures for each are not yet available.
Your model will require a continuous input of quarters to recognize a regression pattern. A Quarter attribute is commonly formatted to represent a year followed by a quarter, and therefore cannot be used as a continuous index into the quarters. To address this requirement, create a Quarter Index metric using the Quarter attribute. Since a year followed by a quarter is still a sequential list of values, you can often create a Quarter Index metric with the following simple expression:
Rank(Max(Quarter@ID) {Quarter})
This uses the ID values for a Quarter attribute, and creates a sequential list of values by ranking them. For example, assume you are using values dating back to the beginning of 2012. Quarter 201202 (Q2 in year 2012) has an index of 2 since it is the second quarter overall. Quarter 201403 (Q3 in year 2014) has an index of 11.
If the ID values for your attribute representing quarter data are not sequential, you must determine a way to convert the ID values into a sequential list of values.
The example Tutorial project includes a Quarter Index metric, along with other reports and metrics created for this forecasting example. Some of the definitions of metrics and reports within the Tutorial project are different than the simplified descriptions in this example. You can use the definitions provided in the steps here, or the definitions in the Tutorial project, depending on what works best for your reporting environment.
To begin your data mining analysis, use the Training Metric Wizard to design a training metric, following the steps described below.

To create a training metric for linear regression analysis

1In MicroStrategy Developer, select Training Metric Wizard from the Tools menu. The Training Metric Wizard opens on the Introduction page.
2Click Next. The Select Type of Analysis page opens.
3Select Linear regression as the type of analysis.
4Click Next. The Select Metrics page opens.
5Add Revenue as the Dependent Metric.
6Add the Quarter Index metric to the list of Independent Metrics.
7Clear the Show advanced options check box to use the default settings for variable reduction and other variable settings.
8Click Next. The Select Output page opens.
9Select the Automatically create on report execution check box.
10Within the Predictive metrics to generate area, select Predicted Value.
11Click Finish to save and create the metric.
For more information on the Training Metric Wizard, see Creating a predictive model using MicroStrategy or refer to the MicroStrategy online help.
Next, create a report that includes the new training metric and the Quarter attribute. Include the Revenue metric to compare the values calculated by the training metric with the original values. Review the Report Data Options and VLDB properties for your report to ensure that outer join results are displayed for the metrics of your report. Execute the report.
The training metric generates a straight line that best fits the Revenue data. The report, converted into a dashboard to display this trend, is shown below.
A predictive metric is created in the folder you specified in the Training Metric Wizard. The default location is the My Objects folder.
The predictive metric accurately depicts a linear line through the Revenue data, but for this example, assume that you are not satisfied with the predictions. Your data is seasonal and you need to forecast the fluctuations that will occur throughout the year.
Seasonality is recognized by adding another independent metric to the training metric. This additional metric specifies the quarter within the year associated with each Quarter Index value. For example, the Quarter Index values of 1, 5, and 9 are all from the first quarter. The Quarter of Year metric uses the same basic formula as Quarter Index. The BreakBy parameter is defined as year so that the ranking is restarted for each year, allowing each quarter to be numbered 1 through 4 for a given year. The formula is shown below:
Rank<BreakBy={Year}>(Max(Quarter@ID) {Quarter} )
To include seasonality in your data mining model, complete the following steps.

To add seasonality to the data mining model

1In MicroStrategy Developer, double-click the training metric you created in To create a training metric for linear regression analysis to open the Training Metric Wizard to the Introduction page.
2Click Next. The Select Type of Analysis page opens.
3Do not change any of the values on this page. Click Next. The Select Metrics page opens.
4Add the Quarter of Year metric to the list of Independent Metrics, which already includes the Quarter Index metric.
5Click Next. The Select Output page opens.
6Rename the predictive metric so that the existing linear predictive metric is not overwritten.
7Save the training metric with a new name to distinguish it as a seasonal prediction.
For more information on the Training Metric Wizard, see Creating a predictive model using MicroStrategy or refer to the MicroStrategy online help.
You can now re-execute the report you created earlier that included the training metric, Quarter, and Revenue. The results of the training metric now recognize the fluctuations in revenue throughout each year and predict values accordingly. Notice that the data accounts for seasonality and is no longer a straight line, as shown in the report below.
A predictive metric is created in the folder you specified in the Training Metric Wizard. The default location is the My Objects folder.

Comments

Post a Comment

Popular posts from this blog

MicroStrategy URL API Parameters

MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

Case functions Microstrategy

Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

Execute Integrity manager test from Command line

Execute Integrity manager test from Command line  MSTR Integrity Manager allows the user to execute a test without having to load the GUI, or to schedule a test to run later at specific times or dates. Go over using Windows AT command at: https://support.microsoft.com/en-us/help/313565/how-to-use-the-at-command-to-schedule-tasks https://www.lifewire.com/at-command-2618090 Here are the prerequisites to execute a test from the command line: Create a test and saved using the Integrity Manager graphical interface. Make sure that the users has the ' Use Integrity Manager ' privilege for that project(provided by the administrator) and the ' Execute ' permission for the reports to be tested. Keep in mind that MicroStrategy Integrity Manager can only test three-tier projects, i.e., projects which are connected to a MicroStrategy i- Server. Projects in Direct Connection (two-tier) mode cannot be tested with this tool...

The logical table size calculation in Microstrategy

The logical table size calculation in Microstrategy The logical table size is an integer number that represents the granularity or level of aggregation of a particular table. It is called 'logical' because it is not related to the physical size of the tables (number of rows). It is calculated according to the attribute IDs that are present in the table and their level in the system hierarchy.   Even though, the number does not reveal the actual number of rows in the table, it is an accurate way of measuring a table size without having to access its contents.   MicroStrategy Engine utilizes an algorithm based on attribute keys to calculate the Logical Table Size (LTS):   Given the following tables:     The algorithm that calculates the table sizes performs the following steps: Calculate the number of levels per hierarchy: Hierarchy 1: 3 Hierarchy 2: 4 Calculate each attribute individual weight according to the level in the hierarchy (level in hierarchy/number of ...

Microstrategy Dossiers explained

Microstrategy  Dossiers With the release of MicroStrategy 10.9, we’ve taken a leap forward in our dashboarding capabilities by simplifying the user experience, adding storytelling, and collaboration.MSTR has  evolved dashboards to the point that they are more than dashboards - they are  interactive, collaborative analytic stories . Ultimately, it was time to go beyond dashboards, both in concept and in name, and so  the've  renamed VI dashboards to  ‘ dossiers ’.  Dossiers can be created by using the new Desktop product or Workstation or simply from the Web interface which replaces Visual Insights. All the existing visual Insights dashboards will be converted to Dossiers   With MicroStrategy 10.9, there was an active focus on making it easier to build dashboards for the widest audience of end users. To achieve this, some key new capabilities were added that make it easier to author, read, interact and collaborate on dashboards ...

Prompt-in-prompt(Nested Prompts) in Microstrategy

Prompt-in-prompt(Nested Prompts) in  Microstrategy Nested prompts allows you to create one prompt based on the other and other bases on another, nested prompts allows us to prompt the highest level(Like year) to middle level(like Quarter, then to the low level(like Month). Here you can see how to  create a 3-level deep nested prompt that will prompt the user to select a year, then a quarter within that year, then a month within that quarter. Prompt-in-prompt is a feature in which the answer to one prompt is used to define another prompt. This feature is only implemented for element list prompts . The following procedure describes how to achieve this: Create the highest level filter. This is a filter which contains a prompt on an attribute element list. Create a filter on the attribute "Year." Click "prompt on attribute element list" and click "Next" through the rest of the screens to accept the default values. Do not set any additio...

Microstrategy Custom group and consolidation comparison

Custom group and consolidation comparison Both consolidations and custom groups provide flexibility in reports, but the objects differ in their structure and use. The essential distinction is that consolidations work with attributes and custom groups use filters. Consolidations are groupings of attribute elements while custom groups are based on filter criteria. Custom groups are used to apply different filters to different rows of a report. Consolidations are used to create virtual attributes to allow reporting on attributes that do not exist in the data model. Finally, row level math can be performed with consolidations but not with custom groups. Custom groups are more flexible than consolidations because you do not have to know much about your data to create filters for a custom group. In contrast, consolidations require that you know exactly which attribute elements to select when creating the consolidation. To continue with the examples from the previous sect...

Control the display of null and zero metric values

Show   Control the display of null and zero metric values in a grid report You can determine how to display or hide rows and columns in a grid report that consist only of null or zero metric values. You can have MicroStrategy hide the rows and columns in the following ways: Hide rows and columns that consist only of null metric values Hide rows and columns that consist only of zero metric values Hide rows and columns that consist only of null or zero metric values (default) Once you have defined how MicroStrategy hides null and zero metric values in the grid, you can quickly show or hide the grid using the Hide Nulls/Zeros option in the Data menu, as described below, or by clicking the  Hide Nulls/Zeros  icon  in the Data toolbar. To determine how null and zero metric values are displayed or hidden in a grid report Open the report in Edit mode. From the  Tools  menu, select  Report Options . The Report Options...

Microstrategy document/dashboard applying selections as filters or slices

Applying selections as filters or slices In a Microstrategy Document the selections a user makes in a selector can either filter or slice the data in the target: Filtering means that the data for the current selection is calculated only when it is requested by the user. The selections are used to filter the underlying dataset before the metric values are aggregated at the level of the Grid/Graph that is displayed in the document. If the source attribute is not included in the Grid/Graph, the metric values from all the selected elements are aggregated and shown at the level specified in the Grid/Graph. All metric condition selectors (which filter metric values or ranks) and selectors that target other selectors filter data by default. You cannot change them to slicing selectors. Slicing means that the data for each available item in the selector is calculated in advance when the document is first displayed. Selections made while ...