Skip to main content

Star schemas and aggregate (or summary) fact tables


Aggregate tables can further improve query performance by reducing the number of rows over which higher-level metrics must be aggregated. 
However, the use of aggregate tables with dimension tables is not a valid physical modeling strategy. Whenever aggregation is performed over fact data, it is a general requirement that tables joined to the fact table must be at the same attribute level or at a higher level. If the auxiliary table is at a lower level, fact rows will be replicated prior to aggregation and this will result in inflated metric values (also known as "multiple counting").

With the above Time dimension table, a fact table at the level of Day functions correctly because there is exactly one row in DIM_TIME for each day. To aggregate the facts to the level of Quarter, it is valid to join the fact table to the dimension table and group by the quarter ID from the dimension table.

Sql
select DT.QUARTER_ID,
   max(DT.QUARTER_DESC) Quarter_Desc
   sum(FT.REVENUE) Revenue
from DAY_FACT_TABLE FT
   join DIM_TIME DT
      on (FT.DAY_ID = DT.DAY_ID)
group by DT.QUARTER_ID

If, however, there is an aggregate fact table already at the level of Quarter, the results will not be correct. This is because the query must join on Quarter ID, but the quarter ID is not a unique key of the dimension table. Because any given quarter of a year contains 90, 91 or 92 days, the dimension table will contain that many rows with the same quarter ID. Thus fact rows will be replicated prior to taking the sum, and the sum will be too high.

Sql
select FT.QUARTER_ID,
   max(DT.QUARTER_DESC) Quarter_Desc
   sum(FT.REVENUE) Revenue
from QTR_FACT_TABLE FT
   join DIM_TIME DT
      on (FT.QUARTER_ID = DT.QUARTER_ID)
group by FT.QUARTER_ID

This is a generally recognized problem with star schemas, and is not strictly a MicroStrategy limitation.

Star schemas will function correctly with MicroStrategy SQL Generation Engine 8.x as long as they obey the general data warehousing principle that fact tables should not be at a higher level than the dimension tables to which they are joined.

If aggregate tables are required, it is necessary to provide higher-level lookup tables with unique rows corresponding to each aggregate table's key. Logical views are a way to do this without adding tables or views to the warehouse. For example, LWV_LU_QUARTER may be defined using the following SQL statement:

Sql
select distinct QUARTER_ID, QUARTER_DESC, YEAR_ID
from DIM_TIME

 

With this logical view, it becomes possible for MicroStrategy SQL Generation Engine 8.x to query the quarter-level fact table as follows. Since the logical view has distinct rows per quarter, multiple counting will not occur in this query.

Sql
select FT.QUARTER_ID,
   max(LQ.QUARTER_DESC) Quarter_Desc
   sum(FT.REVENUE) Revenue
from QTR_FACT_TABLE FT
   join (select distinct QUARTER_ID, QUARTER_DESC, YEAR_ID
         from DIM_TIME) LQ
      on (FT.QUARTER_ID = LQ.QUARTER_ID)
group by FT.QUARTER_ID

For more information on the use of logical views in MicroStrategy SQL Generation Engine 8.1.x and 9.x, consult the MicroStrategy Project Design Guide manual, Appendix B: Logical Tables, "Creating logical tables."

Aggregate tables store pre-summarized totals at a higher level of aggregation than the most granular fact table. They allow reports to be generated from small, rather than large, tables; therefore, performance is enhanced. A successful aggregation strategy seeks to choose aggregate tables that will have the most impact while taking the least amount of space.

Aggregation decisions are driven by the following factors:

  • Usage patterns: Build aggregate tables that are likely to be used the most.
  • Compression ratios: The compression ratio between two tables is defined as the size of the aggregate compared to the size of the smallest table from which the aggregate can be derived.
  • Volatility: Changes in hierarchies over time impact the accuracy of aggregate tables. Sometimes aggregate tables must be rebuilt as a result of changes in dimensions.
A good candidate for aggregation should have at most 10-15 percent of the size of the smallest table from which it is derived.

EXAMPLE:
The MicroStrategy Tutorial project uses aggregate tables by default. A simple metric sum (Revenue) will go to different aggregate tables depending on the attributes on the template.

  1. Create a report with Year on the rows and Revenue on the columns.
  2. Execute the report and view the SQL:

  3. Drill from Year to Item and view the SQL:

The query will go from using ORDER_FACT to ORDER_DETAIL. When Year is on the template, the engine selects the smaller table and the fact is calculated as:

sum(a11.ORDER_AMT)
    instead of:

    sum((a11.QTY_SOLD * (a11.UNIT_PRICE - a11.DISCOUNT)))

    Comments

    1. Is there any solution now to use aggregate tables with star schema without creating logical tables?

      ReplyDelete

    Post a Comment

    Popular posts from this blog

    Microstrategy Custom number formatting symbols

    Custom number formatting symbols If none of the built-in number formats meet your needs, you can create your own custom format in the Number tab of the Format Cells dialog box. Select  Custom  as the Category and create the format using the number format symbols listed in the table below. Each custom format can have up to four optional sections, one each for: Positive numbers Negative numbers Zeros Text Each section is optional. Separate the sections by semicolons, as shown in the example below: #,###;(#,###);0;"Error: Entry must be numeric" For more examples, see  Custom number formatting examples . To jump to a section of the formatting symbol table, click one of the following: Numeric symbols Character/text symbols Date and time symbols Text color symbols Currency symbols Conditional symbols Numeric symbols For details on how numeric symbols apply to the Big Decimal data type, refer to the  Project Design Guide . ...

    MicroStrategy URL API Parameters

    MicroStrategy URL Structure The following table summarizes the root URL structure used for every request to MicroStrategy Web. Environment Main Application URL Administration URL J2EE http://webserver/MicroStrategy/servlet/mstrWeb http://webserver/MicroStrategy/servlet/mstrWebAdmin .NET http://webserver/MicroStrategy/asp/Main.aspx http://webserver/MicroStrategy/asp/Admin.aspx Every request sent to MicroStrategy Web calls a central controller. Parameters are appended to  Main.aspx  or  mstrWeb  (in a .NET and J2EE environment, respectively) to indicate to the controller how the request should be internally forwarded and handled. The following examples show a URL for accessing a MicroStrategy folder when the user does not have an existing session. The URL contains not only the parameters needed to connect to MicroStrategy Web, but also the parameters needed to log on and create a session. J2EE environment: <a href="http:...

    Case functions Microstrategy

    Ca se functions Microstrategy Case functions return specified data in a SQL query based on the evaluation of user-defined conditions. In general, a user specifies a list of conditions and corresponding return values. Case This function evaluates multiple expressions until a condition is determined to be true, then returns a corresponding value. If all conditions are false, a default value is returned.  Case  can be used for categorizing data based on multiple conditions. This is a single-value function. Syntax Case ( Condition1 ,  ReturnValue1 ,  Condition2 , ReturnValue2 ,...,  DefaultValue ) Example Case(([Total Revenue] < 300000), 0, ([Total Revenue] < 600000), 1, 2) sum(Case (Day@DESC in (“Sat”,”Sun”), Sales, 0) {~+} Sum(Case(Category@DESC In("Books","Electronics"),Revenue,0)){~+} CaseV (case vector) CaseV  evaluates a single metric and returns different values according to the results. It can be used to perfo...

    Settings for Outer Join between metrics in MicroStrategy

    Settings for Outer Join between metrics in MicroStrategy MicroStrategy adopts multi-pass logic to determine the execution plan for a report. This means that every metric is evaluated in separate SQL passes. Outer Joins come into play when MicroStrategy Engine merges the results from all SQL passes into one report. For a multi-pass report, different Outer Join behaviors can give the user completely different results. In addition, report metrics can be of different types which can, in some cases, influence the result of the outer join. In MicroStrategy, there are two settings that users can access to control Outer Join behavior : Formula Join Type and Metric Join Type . Metric Join Type: VLDB Setting at Database Instance Level Report and Template Levels Report Editor > Data > Report Data Options Metric Level   Metric editor > Tools > Metric Join Type Control Join between Metrics Formula Join Type: Only at Compound/Split...

    Control the display of null and zero metric values

    Show   Control the display of null and zero metric values in a grid report You can determine how to display or hide rows and columns in a grid report that consist only of null or zero metric values. You can have MicroStrategy hide the rows and columns in the following ways: Hide rows and columns that consist only of null metric values Hide rows and columns that consist only of zero metric values Hide rows and columns that consist only of null or zero metric values (default) Once you have defined how MicroStrategy hides null and zero metric values in the grid, you can quickly show or hide the grid using the Hide Nulls/Zeros option in the Data menu, as described below, or by clicking the  Hide Nulls/Zeros  icon  in the Data toolbar. To determine how null and zero metric values are displayed or hidden in a grid report Open the report in Edit mode. From the  Tools  menu, select  Report Options . The Report Options...

    Types of filters in Microstrategy

    Types of filters in Microstrategy Below are the types of filters: 1. Attribute qualification filter These types of qualifications restrict data related to attributes on the report. a) Attribute form qualification Filters data related to a business attribute’s form(s), such as ID or description. •  For example, the attribute Customer has the forms ID, First Name, Last Name, Address, and Birth Date. An attribute form qualification might filter on the form Last Name, the operator Begins With, and the letter H. The results show a list of customers whose last names start with the letter H. b) Attribute element list qualification Filters data related to a business attribute’s elements, such as New York, Washington, and San Francisco, which are elements of the attribute City. • For example, the attribute Customer has the elements John Smith, Jane Doe, William Hill, and so on. An attribute element list qualification can filter data to display only those customer...

    Prompt-in-prompt(Nested Prompts) in Microstrategy

    Prompt-in-prompt(Nested Prompts) in  Microstrategy Nested prompts allows you to create one prompt based on the other and other bases on another, nested prompts allows us to prompt the highest level(Like year) to middle level(like Quarter, then to the low level(like Month). Here you can see how to  create a 3-level deep nested prompt that will prompt the user to select a year, then a quarter within that year, then a month within that quarter. Prompt-in-prompt is a feature in which the answer to one prompt is used to define another prompt. This feature is only implemented for element list prompts . The following procedure describes how to achieve this: Create the highest level filter. This is a filter which contains a prompt on an attribute element list. Create a filter on the attribute "Year." Click "prompt on attribute element list" and click "Next" through the rest of the screens to accept the default values. Do not set any additio...

    Types of result caches in Microstrategy

    Types of result caches Microstrategy The following types of  result caches are created by Intelligence Server: • Matching caches • History caches • Matching-History caches • XML caches All document caches are Matching caches; documents do not generate History caches or XML caches. Intelligent Cube reports do not create Matching caches. Matching caches Matching caches  are the  results of reports and documents that are retained for later use by the same requests later on. In general, Matching caches are the type of result caches that are used most often by Intelligence Server. When result caching is enabled, Intelligence Server determines for each request whether it can be served by an already existing Matching cache. If there is no match, it then runs the report or document on the database and creates a new Matching cache that can be reused if the same request is submitted again. This caching process is managed by the system administrator and ...

    MicroStrategy VLDB properties with Hive

     Recommended VLDB Properties for use of  MicroStrategy 9 with Hive 0.7x The recommended VLDB optimizations for Hive 0.7x are listed below. These values are set by default when the "Hive 0.7x" database object is used (set at  Configuration Managers > Database Instances > Database Instance > Database connection type ) Selected Default VLDB Properties for Hive 0.7x  VLDB Category  VLDB Property Setting  Value   Tables  Fallback Table Type  Permanent Table  Tables  Maximum SQL Passes Before FallBack   0 (no threshold)  Tables  Maximum Tables in FROM Clause Before FallBack  0 (no threshold)  Tables  Drop Temp Table Method  Drop after final pass   Tables  Table Creation Type  Implicit Table  Query Optimizations   Sub Query Type   Use Temporary Table, falling back to IN (SELECT COL) for cor...

    Images in Microstrategy PDF Export shows Red X

    When exporting a report containing an image attribute form (using an ApplySimple statement) to PDF in MicroStrategy Web 9.4.1 and 10.x, with the Intelligence Server running on Linux, the image in the exported PDF report appears as a red "X". When exporting a report containing an image attribute form (using an ApplySimple statement) to PDF in MicroStrategy Web 9.4.1 and 10.x, with the Intelligence Server running on Linux, the image in the exported PDF report appears as a red "X" as shown below: However, the images in the report display properly when the report is executed in MicroStrategy Developer and Web. Furthermore, when the report is exported to PDF on Desktop (with the original images saved in WebASPX\Images), the images in the report display properly, as indicated below: CAUSE This is expected behavior. When the report is displayed in MicroStrategy Developer and Web, or when the report is exported to PDF from MicroStrategy Dev...